SUPPLEMENTARY MATERIAL
Title: Biomarkers of ambient air pollution and lung cancer: strength of evidence Christiana Demetriou^{1,6}, Ole Raaschou-Nielsen² Steffen Loft³, Peter Møller³, Roel Vermeulen⁴, Domenico Palli⁵, Marc Chadeau-Hyam¹, Wei W Xun¹, Paolo Vineis¹

Table	of Contents	
Title o	of Item	Page
•	Supplemental Material Table 1 – Prospective study results on the relationship between exposure to air pollution and lung cancer incidence and/or mortality, listed by study or cohort	2
•	Supplemental Material Table 2 – Results on the association between air pollution and 1-OHP in the urine of exposed individuals: linear regression, logistic regression, and correlation analyses	7
•	Supplemental Material Table 3 – Results on the association between air pollution and 1-OHP in the urine of exposed individuals: comparison of means analysis	8
•	Supplemental Material Table 4 – Results on the association between air pollution and DNA adducts in exposed individuals; linear regression, logistic regression and correlation analyses	9
•	Supplemental Material Table 5 – Results on the association between air pollution and DNA adducts in exposed individuals; comparison of means analysis Supplemental Material Table 6 - Results on the association between air pollution and oxidatively damaged nucleobases/deoxynucleosides in urine or mononuclear	10
	blood cells; comparison of means analysis	11
•	Supplemental Material Table 6a - Confounding in studies of DNA adducts	13
•	Supplemental Material Table 7 - Results on the association between air pollution and oxidatively damaged nucleobases/deoxynucleosides in urine or mononuclear blood cells; linear regression and correlation analysis	14
•	Supplemental Material Table 7a – Confounding factors controlled for in studies investigating oxidative damage to nucleobases	15
•	Supplemental Material Table 8 – Results on the association between air pollution and CAs in the cells of exposed individuals; logistic regression and comparison of means analyses	16
•	Supplemental Material Table 9 – Results on the association between air pollution and MN in peripheral blood cells of exposed individuals: linear regression analyses	18
•	Supplemental Material Table 10 - Results on the association between air pollution and methylation changes in the cells of exposed individuals	19
•	Supplemental Material Figure 1 - Flow Chart of Literature Review	21
•	Supplemental Material Figure 2 - Putative Mechanisms of cancer through oxidative damage from air pollution	22
•	Supplemental Material Figure 3 - Funnel plot of the standard error of the standardized mean difference (SMD) vs the SMD of studies on DNA adducts (in a fixed effects model to get the pseudo CI lines).	23
•	Supplemental Material Figure 4 - Funnel plot of the standard error of the standardized mean difference (SMD) vs the SMD of all the studies on oxidative DNA damage shown in Table 6- Supplemental Material (in a fixed effects model to get the pseudo CI lines).	24
•	Supplemental Material References	25

Table 1 – Prospective study results on the relationship between exposure to air pollution and lung cancer incidence and/or mortality, listed by study or cohort

First Author, Year	Area/ Country	Exposure:	Outcome	Controlled Confounders	Number of Subjects	RR†	CI†
1 cui	Country	Laposure,		AN STUDIES	Bubjects	TXIX	CI ₁
American Legion	Study						
Buell, 1967	USA	>10 yrs in LAcounty vs.other counties >10yrs vs. <10yrs in	Lung Cancer Mortality Lung Cancer	Age, sex, smoking, size of birthplace	336,571 person-yrs	2.5	*not reported *not
1.0777.50.00.00		LA county	Mortality	Age, sex, smoking, size of birthplace		1.26	reported
ASHMOG Study							
Mills, 1991	USA	Total Suspended Particulate (exceedance frequency of 200µg/m3) Ozone (exceedance	Cancer in females incidence Lung Cancer	Age, sex, education, ex-smoking, ETS†, and occupational exposure Age, sex, education, ex-smoking, ETS, and	6,000	1.72	0.81-3.65
		frequency of 10pphm)	incidence	occupational exposure		2.25	0.96-5.31
Beeson, 1998	California, USA	Ozone (100ppb increase) PM10† (IQR increase) SO ₂ (IQR increases) PM10 exceedance frequencies of 50 microg/m3 (IQR increase) PM10 exceedance	Lung Cancer incidence - males Lung Cancer Incidence - males Lung Cancer Incidence - males Lung Cancer Incidence - females	Pack-years of past cigarette smoking, educational level, and current alcohol use Pack-years of past cigarette smoking, educational level, and current alcohol use Pack-years of past cigarette smoking, educational level, and current alcohol use Smoking, Age	6,338	3.56 5.21 2.66	1.35-9.42 1.96-13.99 1.62-4.39
		frequencies of 60 microg/m3 (IQR increase) SO ₂ (IQR increases)	Lung Cancer Incidence - females Lung Cancer Incidence - females	Smoking, Age Smoking, Age		1.25 2.14	0.57-2.71 1.36-3.37
Abbey, 1999	USA	PM10 (IQR increase in mean conc.) PM10 (IQR increase in mean conc.)	Lung Cancer Mortality in males Lung Cancer Mortality in females	Years of education, pack-years of ex smoking, alcohol use Years of education and pack-years of past smoking	6,338	3.36 1.33	1.57-7.19 0.60-1.96

		Ozone (IQR increase in mean conc.) Ozone (IQR increase in mean conc.) SO ₂ (IQR increase in mean conc.) SO ₂ (IQR increase in mean conc.) NO ₂ (IQR increase in mean conc.)	Lung Cancer Mortality in males Lung Cancer Mortality in females Lung Cancer Mortality in males Lung Cancer Mortality in females Lung Cancer Mortality in males Lung Cancer	Years of education, pack-years of ex smoking, alcohol use Years of education and pack-years of past smoking Years of education, pack-years of ex smoking, alcohol use Years of education and pack-years of past smoking Years of education, pack-years of ex smoking		2.10 0.77 1.99 3.01 1.82	0.99-4.44 0.37-1.61 1.24-3.20 1.88-4.84 0.93-3.57
		NO ₂ (IQR increase in mean conc.)	Lung Cancer Mortality in females	Years of education and pack-years of past smoking		2.81	1.15-6.89
McDonnell, 2000	USA	PM2.5† (IQR increase = 24.3 μg/m3), PM2.5-10 (IQR increase = 9.7 μg/m3)	Lung Cancer Mortality Lung Cancer Mortality		6,338	2.23 1.25	0.56-8.94 0.63-2.49
		PM10 (IQR increase =	Lung Cancer				
American Cancer Pre	evention Study	29.5μg/m3) II	Mortality			1.84	0.59-5.67
Pope, 2002	USA	NO ₂ (10 microg/m3 increase)	Lung Cancer Mortality	Age, sex, race, smoking, education, marital status, body mass, alcohol comsumption, occupation, and diet	409-493 thousand	1.14	1.04-1.23
Jerrett, 2005	USA	PM10 (10 microg/m3 increase)	Lung Cancer Mortality	Age, sex, race, education, smoking, marital status, BMI, alcohol consumption, occupational exposure, diet, and other ecological variables Age, sex, race, education, smoking, marital	22,905	1.2	0.79-1.82
		Ozone (10 microg/m3 increase)	Lung Cancer Mortality	status, BMI, alcohol consumption, occupational exposure, diet, and other ecological variables Age, sex, race, education, smoking, marital status, BMI, alcohol consumption,		0.99	0.91-1.07
		Distance to freeways (<500m vs. >500m)	Lung Cancer Mortality	occupational exposure, diet, and other ecological variables		1.44	0.94-2.21
Turner, 2011	USA	PM2.5 (10 microg/m3 increase) ACP PM2.5 (10 microg/m3	Lung Cancer Mortality	Age, sex, smoking, educational attainment, BMI, chronic lung disease Age, sex, education, marital status, body	188,699	NA	1.15-1.27
Pope, 2011	USA	increase)	Lung Cancer Mortality	mass, alcohol consumption, occupational exposures, smoking duration, and diet	1.2million	1.14	1.04-1.23
Harvard Six Cities St	-		·				
Dockery, 1993	USA	Inhalable particles:	Lung Cancer	Age, sex, smoking, education, and BMI		1.27	1.08-1.48

		Most polluted vs. Least polluted city	mortality							
		Fine particles: Most polluted vs. Least polluted city Sulphate particles: Most polluted vs. Least	Lung Cancer mortality Lung Cancer	Age, sex, smoking, education, and BMI	8,111	1.26	1.08-1.47			
		polluted city	mortality	Age, sex, smoking, education, and BMI		1.26	1.08-1.47			
Krewski, 2005	USA	PM2.5 (most vs. least polluted city = 18.6 microg/m3 increase)	Lung Cancer Mortality Lung Cancer	Age, sex, smoking, education, BMI, diabetes, occupational exposure to dust, gases or fumes	8,111	1.43	0.85-2.41			
Laden, 2006	USA	PM2.5	mortality	Age, sex, smoking, education, and BMI	8,096	1.27	0.96-1.69			
EUROPEAN STUDIES										
Cohort of Oslo me	en									
Nafstad, 2003	Norway	NO(x) (per 10 μg/m3 - home address) SO ₂ (per 10 μg/m3)	Lung Cancer incidence Lung Cancer incidence	Age, smoking habits, and length of education Age, smoking habits, and length of education	16,209	1.08 1.01	1.02-1.15 0.94-1.08			
French PAARC St	udy	, ,								
Filleul, 2005	France	Total Suspended Particulate (exceedance frequency of 200 μg/m3) Black Smoke (for 10 μg/m³) NO (for 10 μg/m³) NO ₂ (for 10 μg/m³) SO ₂ (for 10 μg/m³)	Lung Cancer Mortality Lung Cancer Mortality Lung Cancer Mortality Lung Cancer Mortality Lung Cancer Mortality	Age, sex, BMI, smoking, occupational exposure, education	14,284	0.97 0.97 0.97 0.97 0.99	0.94-1.01 0.93-1.01 0.94-1.01 0.85-1.10 0.92-1.07			
GENAIR Cohort S	otuay		Age, BMI, education, gender, smoking,							
Vineis, 2006	Ten European Countries	PM10 (10 microg/m3 increase)	Lung Cancer Incidence	alcohol use, intake of meat, intake of fruit and vegetables, time since recruitment,	197 cases	0.91	0.70-1.18			

		NO ₂ (10 microg/m3 increase)	Lung Cancer Incidence	country, occupational index and cotinine Age, BMI, education, gender, smoking, alcohol use, intake of meat, intake of fruit and vegetables, time since recruitment, country, occupational index and cotinine Age, BMI, education, gender, smoking,	556 controls	1.14	0.78-1.67
		SO ₂ (10 microg/m3 increase) Proximity of residence to major road (exposed vs. nonexposed)	Lung Cancer Incidence Lung Cancer Incidence	alcohol use, intake of meat, intake of fruit and vegetables, time since recruitment, country, occupational index and cotinine Age, BMI, education, gender, smoking, alcohol use, intake of meat, intake of fruit and vegetables, time since recruitment, country, occupational index and cotinine		1.08	0.89-1.30
Netherlands Cohor	t Study on Diet a	± '	merdence	country, occupational index and commit		1.31	0.02 2.07
Beelen, 2008	Netherlands	Black smoke concentration Traffic intensity on	Lung Cancer incidence Lung Cancer	Age, sex, smoking status, area-level socioeconomic status Age, sex, smoking status, area-level	40,114	1.47	1.01-2.16
		nearest road	incidence	socioeconomic status		1.11	0.88-1.41
		Living near a major road Black smoke (per 10	Lung Cancer incidence Lung Cancer	Age, sex, smoking status, area-level socioeconomic status Age, sex, smoking status, area-level		1.55	0.98-2.43
Brunekreef, 2009	Netherlands	μg/m3) Traffic intensity	Mortality	socioeconomic status	120,000	1.03	0.88-1.20
		(increase of 10,000 motor vehicles/day) Black smoke (per 10	Lung Cancer Mortality Lung Cancer	Age, sex, smoking status, area-level socioeconomic status Age, sex, smoking status, area-level		1.07	0.96-1.19
Diet, Cancer and H	aalth cahart stu	μg/m3)	Incidence	socioeconomic status		1.47	1.01-2.16
Diet, Cancer and II	eartii Conort Stu	uy					
Raaschou- Nielsen, 2011	Denmark	NO_x at residence (per 100 μg/m3 increase) Traffic load at residence	Lung Cancer Incidence	Age, smoking, ETS, length of school attendance, fruit intake, and employment	52,970	1.09	0.79-1.51
		(per 10 ⁴ vehicle km/day)	Lung Cancer Incidence	Age, smoking, ETS, length of school attendance, fruit intake, and employment	52,970	1.03	0.90-1.19
Three Prospective (Cohorts						
-	Conorts	ſ		Smoking (status, duration, and intensity),	679 cases		
Raaschou- Nielsen, 2010	Denmark	NOx ^J (30-72 μg/m3 vs. <30 μg/m3)	Lung Cancer Incidence	educational level, body mass index, and alcohol consumption. Smoking (status, duration, and intensity),	3481 controls	1.30	1.07-1.57
		NOx (>72 μg/m3 vs. <30 μg/m3)	Lung Cancer Incidence	educational level, body mass index, and alcohol consumption.		1.45	1.12-1.88

OTHER STUDIES

Pope, 1995	USA	Most vs. Least polluted: Sulphates Most vs. Least polluted:	Lung Cancer mortality Lung Cancer	Smoking	552,138	1.15	1.09-1.22
		Fine particles NO ₂ (10 microg/m3	mortality Lung Cancer mortality - non	Smoking		1.17	1.09-1.26
Yorifuji, 2010	Japan	increase)	smokers	Smoking Sex, age, smoking status, pack-years, smoking status of family members living together, daily green and yellow vegetable consumption, daily fruit consumption, and	14,001	1.3	0.85-1.93
Katanoda, 2011	Japan	PM2.5 (10 microg/m3 increase)	Lung Cancer mortality	use of indoor charcoal or briquette braziers for heating Sex, age, smoking status, pack-years, smoking status of family members living together, daily green and yellow vegetable consumption, daily fruit consumption, and	63,520	1.24	1.12-1.37
		NO2 (10 microg/m3 increase)	Lung Cancer mortality	use of indoor charcoal or briquette braziers for heating Sex, age, smoking status, pack-years, smoking status of family members living together, daily green and yellow vegetable consumption, daily fruit consumption, and	63,520	1.26	1.07-1.48
		SO2 (10 microg/m3 increase) PM10(1microg/m3	Lung Cancer mortality Lung Cancer	use of indoor charcoal or briquette braziers for heating	63,520 1	1.17	1.10-1.26
Hales, 2011	New Zealand	increase)	mortality	Age, sex, ethnicity	050 222	1.015	0.004-1.026

Table 2 - Results on the association between air pollution and 1-OHP in the urine of exposed individuals: linear regression, logistic regression, and correlation analyses.

First author, Year	Area/ Country	Exposure	Controlled Confounders	Effect Measure≠	Sample Size (Total: 541)	Subject desription	P
Castaño- Vinyals, 2004	Review	B[a]P	Not applicable	r: 0.76	17	Pairs of data - log transformed means - from different studies	0.038
Hansen, 2004	Copenhagen,	B[a]P† Environmental pollution	Job, gender, NAT2 phenotype, age,	r: 0.83		personal sampling of B(a)P: mean values	0.04
114110011, 2004	Denmark	1	vehicle exhaust, cooked food mutagens, physical exercise	OR†: 1.51 (male) / 1.38 (female)	60 88	bus drivers	0.08
				, ,		mail carriers	0.00
Hansen, 2005	Denmark	Residence in urban vs. rural areas	Gender, time spent outside	OR: 1.29	102 100	children in Copenhagen children from rural residences	0.03
		One additional hour	Gender, residence	OR: 1.58	102	children in Copenhagen	-0.001
Freire, 2009	Granada, Spain	spent outside/day NO2 (predicted)	Exposure to ETS† and cooking appliance	β: 0.401	100 93	children from rural residences children with predicted exposure to NO2≥22.50 μg,m ⁻³ /	< 0.001
					81	children with predicted exposure to NO2<22.50 µg,m ⁻³	0.006
Hu, 2011	Taiwan	Residence near a coal fired power plant (PAH	Age, gender, ETS, dietary exposure, and traffic	OR: 1.85 95%CI(1.43, 2.40)	146	Children in high exposure community 1 vs, Low exposure community 1	0.000
		in air)		OR: 1.65 95% CI(1.30, 2.09)	88	Children in high exposure community 2 vs, Low exposure community 1	NA

 $[\]neq$ r = correlation coefficient; β = =linear regression coefficient (change in 1-OHP levels (7icromole/mol) for every unit change in exposure); OR = logistic regression odds ratio \dagger B[a]P Benzo [a] Pyrene; OR odds ratio; ETS environmental tobacco smoke.

Table 3 – Results on the association between air pollution and 1-OHP in the urine of exposed individuals: comparison of means analysis.

First author, Year	Area/ Country	Exposure	Controlled Confounders	Groups Sample Size (Total: 742)	Mean (micromol/mol) ± SD (unless otherwise stated)	P
Ruchirawa, 2002	Bangkok, Thailand	Environmental air pollution	Smoking	Traffic policemen 41 Office policemen 40	0.181±0.078 0.173±0.151	0.044
Hansen, 2004 Tuntawiroon, 2007	Copenhagen, Denmark Bangkok and Chonburi, Thailand	Environmental pollution PAH† from traffic related sources	Job, gender, NAT2 phenotype, age, vehicle exhaust, cooked food mutagens, physical exercise Job, gender, NAT2 phenotype, age, vehicle exhaust, cooked food mutagens, physical exercise Age and lifestyle (i.e. ETS†,diet, transportation, medication etc.)	Bus drivers – all 117samples Mail Carriers – all 93samples Mail carriers Working outdoors 56samples Mail Carriers Working indoors 37samples Bangkok schoolchildren 115 Group matched provincial school children – Day 0 69	0.19 (Range: 0.05-1.60) 0.11 (Range: 0.02-0.75) 0.14 (Range: 0.02-0.75) 0.08 (Range: 0.02-0.57) 0.18±0.01 0.1±0.01	<0.001 <0.001 <0.0001
				Bangkok schoolchildren Day 1 115 Group matched provincial school children – Day 1 69	0.22±0.02 0.12±0.01	<0.0001
Freire, 2009	Granada, Spain	Residence in urban vs. rural areas	Exposure to ETS† and cooking appliance	4yr old children living in urban 118 4yr old children living in rural areas 56	0.060 ± 0.040 0.054 ± 0.055	0.20
Martinez-Salinas, 2010	Mexico	Traffic related air pollution	NA NA	Children in area with low vehicular traffic 39 Children in area with high vehicular traffic 17 Children in all communities of the study 258	0.8 ± 0.2 0.2 ± 0.2	<0.05 >0.05 *P-values compared to children from all communities
Hu, 2011	Taiwan	Residence near a coal fired power plant (PAH in air)	NA	High Exposure Community -1 146 High Exposure Community -2 88 Low Exposure Community -1 86 Low Exposure Community -2 49	$\begin{array}{c} 0.186 \pm 0.148 \\ 0.194 \pm 0.143 \\ 0.113 \pm 0.082 \\ 0.122 \pm 0.089 \end{array}$	NA

[†] PAH polycyclic aromatic hydrocarbons; ETS environmental tobacco smoke.

Table 4 – Results on the association between air pollution and DNA adducts in exposed individuals; linear regression, logistic regression and correlation analyses

First author, Year	Area/ Country	Exposure	Controlled Confounders	Effect Measure≠	Sample Size (Total: 1787)	Subject desription	P
Binkova, 1995	Czech Republic	Outdoor air pollution – individual PAH†	Age, active and passive smoking, consumption of fried or smoked food, job category	r: 0.541	21	Non smoking women working outdoors up to 8 hours – gardeners or postal workers	0.016
Whyatt, 1998	Krakow, Poland	Ambient pollution at mother's place of residence Ambient pollution at place of	Smoking, dietary PAH, use of coal stoves, home or occupational exposures to PAH & other organics Smoking, dietary PAH, use of coal stoves, home or	β: 1.77	19	mothers not employed away from home	0.05
		residence	occupational exposures to PAH and other organics.	β: 1.73	23	newborns of mothers (high pollution / low pollution group)	0.03
Sørensen, 2003							
Castaño-Vinvals,	Copenhagen	Personal PM2.5	Smoking, diet, season	ß=-0.0035	75	Students monitored 4 seasons of a year	0.31
2004 Peluso, 2005	Review 10 European countries	B[a]P† (stationary meas.) O ₃ † levels	Not applicable Age, gender, educational level, country and batch	r: 0.6	12	pairs of data	0.038
,	1			β: 0.066	564	EPIC cohort subjects	0.0095
Neri, 2006	Review	Environmental pollutants (including ETS† exposure)	Not applicable	Not applicable	178	Newborns – 17yr olds 2 studies in total – 2 with statistically significant results	Not applicable
Pavanello, 2006	North-East Italy	B[a]P indoor exposure	Smoking, diet, area of residence, traffic near house,				
Palli, 2008	Florence City, Italy	PM10† (from high traffic	outdoor exposure Smoking	β: 0.973	457	municipal workers (non smoking)	0.012
		stations)		r: 0.562	16	traffic exposed workers	0.02
Peluso, 2008	Thailand	Industrial estate residence	Smoking habits, age, gender	OD+ 1.65	72 50	Industrial estate residents	-0.05
			Smoking habits, age, gender	OR†: 1.65 OR: 1.44	50 64	control district residents PAH exposed workers	< 0.05
			Smoking nabits, age, gender	OK. 1.44	72	industrial estate residents	< 0.05
Pavanello, 2009							
	Poland	1-pyrenol	NA†	r: 0.67	92	coke oven workers and controls	< 0.0001
Pedersen, 2009	Copenhagen, Denmark	Residential traffic density	ETS†, use of open fireplace, pre-pregnancy weight, folate levels, vitamin B12 levels, maternal education and season of delivery	β: 0.6 / 0.7	75 /69	Women /umbilical cords	< 0.01
Garcia-Suastegui, 2011	Mexico City, Mexico	PM2.5	Various risk alleles	r: NR	92	Young adults living in Mexico City	0.013
		PM10	Various risk alleles	r: NR	92	Young adults living in Mexico City	0.035
Herbstman, 2012	USA	PAH exposure – measured in both air and urine	NA	r: NR	NR	152 participants – prenatal exposure, DNA adducts in cord blood	Not significant

 $[\]neq$ r = correlation coefficient; β =linear regression coefficient (change in DNA adduct levels (adducts/10^8 nucleotides) for every unit change in exposure); OR = logistic regression odds ratio † PAH polycyclic aromatic hydrocarbons, PM10 particulate matter of diameter less than 10 microns; B[a]P Benzo [a] Pyrene; O₃ ozone; NA not available; ETS environmental tobacco smoke; OR odds ratio

Table 5 – Results on the association between air pollution and DNA adducts in exposed individuals; comparison of means analysis.

First author, Year	Area/ Country	Exposure	Controlled Confounders	Groups Sample Size (Total: 1044)	Mean adducts/ 10^8 nucleotides ± SD (unless otherwise stated)	P
Perera, 1991	Poland	Environmental air pollution	NA†	Residents in industrial area 20 Rural controls 21	30.4±13.5 11.01±22.6	< 0.05
Hemminki, 1994	Stockholm, Sweeden	Traffic related air pollution	Age, smoking	Bus drivers – urban routes 26 Bus drivers – sub urban routes 23 Taxi drivers – mixed routes 19 Controls 22	0.9 ± 0.35 1.4 ± 0.48 1.6 ± 0.91 1.0 ± 0.32	Non sig. <0.001 <0.010
Nielsen, 1996	Denmark	Environmental air pollution	Smoking, PAH† rich diet	Bus drivers in Central Copenhagen 49 Rural controls 60	Median: 1.214 Range: 0.142-22.24 Median: 0.074	
Nielsen, 1996 (2)	Denmark and Greece	Environmental air pollution	Smoking, sex	Students in urban universities 74 Students in agricultural colleges 29	Range: 0.003-8.876 Median: 0.205 Median: 0.152	0.001
Yang 1996	Milan, Italy	Traffic related air pollution	Sex, age, smoking habits	News stand workers at high traffic areas 31 News stand workers at low traffic areas 22	$ 2.2 \pm 1.0 \\ 2.2 \pm 1.2 $	0.02
Topinka, 1997	Teplice & Prachatice, N&S Bohemia	Residence in Industrial area	NA†	Placenta samples- industrial polluted area (winter): GSTM-genotype 15 Placenta samples –agricultural area (winter): GSTM-	1.49 ± 0.70	
Merlo, 1997	Genova,	Ambient PAH concentrations	NA†	genotype 17 Traffic police workers 94 Urban residents 52	0.96 ± 0.55 1.48 ± 1.35 1.01 ± 0.63	0.027 0.007
Ruchirawa, 2002	Italy Bangkok, Thailand	Environmental air pollution	Smoking, sex	Traffic Policemen 41 Office duty policemen 40	1.01 ± 0.63 1.6±0.9 1.2±1.0	0.007
Marczynski, 2005	Germany	PAH in air (ambient and personal monitoring)	NA†	Samples from 16 workers(increased PAH exposure) Samples from 16 workers¥ (reduced PAH exposure)	Range: 0.5 – 1.19Range: <0.5 – 0.09	< 0.0001
Topinka, 2007 Tuntawiroon, 2007	Prague, Czech Republic Bangkok and	c-PAH† (personal exposure) c-PAH and B[a]P†	Smoking, ocuupational duration Age and lifestyle (i.e. ETS†,	109 policemen – January (highest exposure) 109 policemen – March	2.08±1.60 1.66±0.65	< 0.0001
1 untawn 0011, 2007	Chonburi, Thailand	C-FAIT and B[a]F	transportation, medication, diet etc.)	Bangkok schoolchildren 115 Provincial school children (group matching) 69	0.45±0.03 0.09±0.00	< 0.0001
Fanou, 2011	Cotonou, Benin	Environmental air pollution	NΑ†	Taxi-motorbike drivers 13 Intermediate exposure suburban group 20	24.6±6.4 2.1±0.6	< 0.001
		Environmental air pollution	NA†	Street food vendors 16 Intermediate exposure suburban group 20	34.7±9.8 2.1±0.6	< 0.001
		Environmental air pollution	NA†	Gasoline salesmen 20 Intermediate exposure suburban group 20	37.2±8.1 2.1±0.6	<0.001
		Environmental air pollution	NA†	Street side residents 11 Intermediate exposure suburban group 20	23.78±6.9 2.1±0.6	<0.001

 $[\]dagger$ N/A not applicable; NA not available; PAH polycyclic aromatic hydrocarbons; c-PAH carcinogenic polycyclic aromatic hydrocarbons; B[a]P benzo [a] pyrene; ETS environmental tobacco smoke Ψ The sample sizes reported in the summary tables refer to subjects with measurements available both before and after change in work conditions

Table 6 - Results on the association between air pollution and oxidatively damaged nucleobases/deoxynucleosides in urine or mononuclear blood cells; comparison of means analysis

First author, Year	Area, country	Exposure definition/source Referents' definition	Biomarker	Groups Sample size (Total: 2827)	Level (Mean ± SD, unless otherwise stated)	Controlled confounders
Suzuki 1995	Japan	Sampling before and after a stay in a street	8-oxoGua in urine (HPLC-ECD)	3	After:9.9±2.5 Before: 4.22±2.0 (pooled data from several timepoints 0-24 after exp.)	Cross-over study
Calderon- Garciduenas 1999	Mexico	Children in urban and low-polluted area	8-oxodG in nasal epithelial cells (immunohistochemistry)	Exposed: 86 Controls: 12	$602 \pm 195*$ 210 ± 122	NA†
Autrup 1999; Loft 1999 Staessen 2001	Copenhagen, Denmark Belgium	Bus drivers in the city center and rural/suburban controls Adolescents from industrial and rural areas	8-oxodG in urine (HPLC-ECD) 8-oxodG in urine (HPLC-ECD)	Exposed: 29 Controls:20 Peer: 100 Wilrijk: 42 Hoboken: 58	1.74 ± 4,69 1.54 ± 4.29 0.44 (0.40-0.48) 0.57 (0.49-0.66)* 0.49 (0.42-0.56) Geometric mean and 95% CI	Age, BMI†, metabolic and DNA repair phenotype Sex, smoking
Chuang 2003	Taiwan	Taxi-drivers and controls	8-oxodG in urine (ELISA)†	Exposed: 95 Controls: 75	$0.33 \pm 0.20 * $ 0.20 ± 0.14	Age, education, exercise
Lai 2005	Taipei city, Taiwan	Highway toll station workers and controls	8-oxodG in urine (ELISA)	Exposed: 47 Controls: 24	13.3±7.1* 8.4±6.2	Age, smoking
Harri 2005	Finland	Garage/waste workers and controls	8-oxodG in urine and MNBC (HPLC-ECD)	Urine: Exposed: 29 Controls: 36	Winter: 1.52 ± 0.44 1.56 ± 0.61 Summer: 1.61±0.33 1.43±0.4	Age, smoking, BMI
Vinzents 2005	Copenhagen, Denmark	Sampling after cycling in traffic-	FPG sites in MNBC	MNBC: Exposed: 19 Controls: 18	4.84± 0.17 4.11 ±0.16 Traffic: 0.08 (0-0.04)*	Cross-over study
vinzents 2000	Copennagen, Benmark	intense streets or laboratory	TT G Sites in TVITABLE	13	Lab: 0.02 (0-0.04)	Closs over stady
Avogbe 2005	Rep. of Benin	Subjects from urban and rural areas	FPG sites in MNBC	Taximoto: 24 Roadside: 37 Suburban: 42 Rural: 27	1620 ± 310 * 1250 ± 198 * 1110 ± 188 * 650 ± 160	Metabolic genes
Fanou 2006	Rep. of Benin	Taxi-moto drivers and controls	8-oxodG in MNBC (HPLC-ECD)	Exposed: 35 Controls: 6	2.05±1.25* 1.11±0.82	NA†
Cavallo 2006	Italy	Airport personnel and controls	FPG sites in MNBC	Exposed: 41 Controls: 31	55.86 ± 12.85* 43.01 ± 7.97	Age, smoking, dietary habits
Bräuner 2007	Copenhagen, Denmark	Sampling before and after controlled exposure to street PM	FPG sites in MNBC	29	Air: 0.53 (0.37-0.65)* FA†:0.38 (0.31-0.53) Median and quartiles	Age, sex, smoking, CVD†, BMI
Singh 2007	Prague (Czech Rep.) Kosice (Slovakia) Sofia (Bulgaria)	City policemen, bus drivers and controls	$\begin{array}{l} 8\text{-}oxodG~(LC\text{-}MS/MS)\\ M_1dG~(immunoslot~blot)\\ In~MNBC \end{array}$	Exposed: 98 Controls: 105 Exposed: 198 Controls: 156	33.0±30.1 29.2±21.2 58.3±37.5 49.2±30.3	Smoking, demographic variables, diet
Novotna 2007	Prague, Czech Rep.	Policemen and controls sampled in different seasons	ENDOIII/FPG sites in MNBC	Exposed: 54 Controls: 11	Jan: 2.91 ± 1.84 * Sep: 2.12 ± 1.62 Jan: 1.36 ± 1.53	Metabolic and DNA repair genotypes
Rossner, Jr. 2007,	Prague, Czech Rep.	Bus drivers and controls sampled in	8-oxodG in urine	Exposed: 50	Sep: 1.22 ± 0.96 $7.59 \pm 2.25*$	Medical history, lifestyle

****		1 1100	(77.70.1)		5.50	
2008		there different seasons	(ELISA)		6.73 ± 2.48 *	
				G . 1 . 50	5.67 ± 2.50 *	
				Controls: 50	6.29 ± 2.59	
					5.51 ± 2.36	
D 411	· · ·			T	3.82 ± 1.73	36.1.1
Buthbumrung 2008	Thailand	Schoolchildren in Bangkok and rural	8-oxodG in leukocytes	Exposed: 40	0.25 ± 0.13	Metabolic genes
		controls	and urine (HPLC-ECD)	Controls: 32	0.08 ± 0.34	
				Exposed 43	2.16 ± 1.84	
				Controls: 32	1.32 ± 1.24	
Danielsen 2008	Sweden	Sampling before and after controlled	8-oxodG	13	16.4% (95% CI: -6.9,45.5)	Cross-over study
		exposure to wood smoke	8-oxoGua in urine:		79.3% (95% CI -12.9,269)	
			HPLC-GC/MS		-15% (95% CI:-31.1,4.9)	
			FPG sites in MNBC			
Palli 2009	Florence, Italy	Metropolitan area	FPG sites in MNBC	Exposed 44	5.0 ± 3.06	Sex, smoking, season
				Controls: 27	4.11 ± 3.96	
Svecova 2009	Teplice and Prachatice	Children	8-oxodG in urine (ELISA)	Teplice: 495	14.6 (3.1-326.5)	Ethinicity, mothers smoking, education,
	(Czech Rep.)			Prachatice:399	15.2 (3.0-180.8)	sex, age, atopic diseases
Bagryantseva 2010	Praque, Czech Rep.	Bus drivers, garage men and office	8-oxodG in urine (ELISA)	Bus drivers: 50	5.67 ± 2.5*	Age, vitamins, plasma lipids, metabolic and
g_;		workers		Garage men: 20	$6.54 \pm 6.9*$	DNA repair genes
				Controls: 50	3.82 ± 1.73	
			EndoIII/Fpg sites in	Bus drivers: 50	2.35 ± 2.17	
			lymphocytes	Garage men: 20	2.56 ± 2.52	
			Tymphocytes	Controls: 50	2.55 ±2.86	
				Controls, 50	2.33 ±2.00	
Han 2010	Taiwan	Bus drivers and office workers	8-oxodG in urine (ELISA)	Exposed: 120	$9.5 \pm 5.7*$	Age, BMI, smoking. Alcohol, areca
				Controls: 58	7.3 ± 5.4	chewing, tea, coffee energy drink, exercise
Fan 2011	GuangZhou City, China	Children	8-oxodG in urine (ELISA)	Exposed: 39	20.87 ± 14.42	Age, sex, height, weight, passive smoking,
				Controls: 35	16.78 ± 13.30	diet, transportation tool and time taken to/from school
Rossner, Jr, 2011	Prague and Ostrava	Policemen and office workers	8-oxodG in urine (ELISA)	Ostrava: 75	4.28 ± 2.27	Age, passive smoking, cotinine, plasma
- ,- , -	(Czech Rep.)			Praque: 65	4.84 ± 1.61	lipids, vitamins, DNA repair gens
				*		1 6

[†] BMI body mass index; NA not available; CVD cardiovascular disease; ELISA enzyme-linked immunosorbent assay; FA filtered air

Table 6a. Confounding in studies of DNA adducts

Adjustment	Number of studies	References
Several relevant confounders including smoking but not diet	7	Hemminki 1994, Nielsen 1996, Peluso 2005, Peluso 2008, Ruchirawa 2002, Topinka 2007, Yang 1996,
Several relevant confounders including smoking including diet	7	Binkova 1995, Nielsen 1996 (2), Pavanello 2006, Pedersen 2009, Sorensen 2003, Tuntawiroon 2007, Whyatt 1998,
Smoking	1	Palli 2008
Various Risk Alleles	1	Garcia-Suastegui 2011
Confounding not relevant	1	Marczynski 2005
No information about confounding factors	6	Ayi Fanou 2011, Herbstman 2012, Merlo 1997, Pavanello 2009, Perera 1991, Topinka 1997

Table 7 - Results on the association between air pollution and oxidatively damaged nucleobases/deoxynucleosides in urine or mononuclear blood cells; linear regression and correlation analysis

First author, year	Area, country	Exposure definition/source	Biomarkers and methods	Sample size (Total: 1642)	Effect Measure≠	Controlled confounders
Lagorio 1994	Rome Italy	Filling station attendants	8-oxodG in urine (HPLC-ECD)	(10tal. 1042)		Age, length of employment, smoking,
Lagorio 1774	Rome Rary	Timing station attendants	o oxodo in unine (Tir Le EeD)	65	r = 0.34* (benzene)	exposure to X-ray
Sørensen 2003a	Copenhagen, Denmark	Students living in the metropolitan area	8-oxodG (HPLC-ECD) in urine	00	$\beta = 0.010*$ (8-oxodG, lymphocytes)	Season, sex, outdoor temperature
	1 2		and MNBC		$\beta = -0.007 \text{ (8-oxodG, urine)}$	1
			FPG/EndoIII sites in MNBC	50	$\beta = 0.0025$ (EndoIII)	
					$\beta = 0.014 \text{ (FPG)}$	
Sørensen 2003b	Copenhagen, Denmark	Healthy subjects living in the	FPG/EndoIII sites in MNBC		$r_s = 0.39*$	Smoking, type of work, sex, genotype
		metropolitan area	8-oxodG (HPLC-ECD) in urine	40		(metabolism)
			and MNBC		Non-significant	
Vinzents 2005	Copenhagen, Denmark	Sampling after cycling in traffic-intense	FPG sites in MNBC		β =1.5x10 ⁻³ per ultrafine particle time	Cross-over study
D		streets or laboratory	The second	15	weighted exposure unit	i gral prais i i i
Bräuner 2007	Copenhagen, Denmark	Sampling before and after controlled	FPG sites in MNBC	20	$NC_{12}\dagger : \beta = -0.033$	Age, sex, smoking, CVD†, BMI† included
		exposure to street PM		29	NC_{23} : $\beta = 0.066*$	in model
Chuang 2007	Taipei, Taiwan	College students living in the	8-oxodG in plasma (ELISA)		NC ₅₇ : β=0.040* PM10: -9.2%, (95% CI: -21.5;3.2)	Sex, age, BMI, weekday, temperature,
Chuang 2007	raipei, raiwan	metropolitan area	8-0x0dO III piasina (ELISA)		PM10: -9.2%, (95% CI: -21.5;5.2) PM2.5: -5.0% (95% CI: -14.3-4.4)	relative humidity
		metropontan area		76	O3: 2.2% (95% CI: 0.9;3.5)	relative numberty
De Coster 2008	Flanders, Belgium	Industrial and urban areas	8-oxodG in urine (ELISA)	70	$\beta = 0.179 \text{ (95\% CI: 0.077-0.282)}$ with	Age, Sex, recent smoking
De Costel 2000	randers, Belgium	madstrar and aroun arous	o oxodo in dime (EDIS/1)	399	1-OHP as biomarker of internal	rige, bea, recent smoking
				5,,	exposure	
Svecova 2009	Teplice&Prachatice	Children living in the two areas	8-oxodG in urine (ELISA)	Teplice: 495	r	Ethinicity, mothers smoking, education, sex
	(Czech Rep.)	C	. ,	Prachatice:399	β=0.16* (air pollutants)	age, atopic diseases
Allen 2009	Washington, USA	Subjects with MetS with controlled	8-oxodG in urine (ELISA) †			Cross-over study
		exposure to diesel exhaust		10	$\beta = 0.087 (95\% \text{ CI: } -0.13; 0.31)$	
Kim 2009	Boston, USA	Subjects with hypertension and controls	8-oxodG in urine (ELISA)		β =-0.60 (hypertensive)	Age, sex, smoking, time of the day
		(panel study)		21	β =1.1 (controls)	
Bagryantseva 2010	Praque, Czech Rep.	Bus drivers, garage men and office	8-oxodG in urine (ELISA)	120	β = 0.105 /BaP	Age, vitamins, plasma lipids, metabolic and
		workers		120	$\beta = 0.026 \text{ (PAH)}$	DNA repair genes
			EndoIII/FPG sites in	120	β =-0.62 (BaP)	
			lymphocytes		β=-0-056 (PAH)	
Lee 2010	Taiwan	Inspection station workers and controls	8-oxodG in urine (ELISA)	Exposed:11		Smoking, cooking at home
Lee 2010	1 diwaii	inspection station workers and controls	o-oxodo ili ulille (ELISA)	Controls: 32	β =7.47 (SE = 3.3)*	Smoking, cooking at nome
Fan 2011	GuangZhou City, China	Children in a kindergarten	8-oxodG in urine (ELISA)	74	r=0.055 (OH-PAH)	Age, sex, height, weight, passive smoking,
I WII WVII	Guangzaiou City, Cillia	Children in a kindergarten	o oxodo in unite (LLIDA)	77	1-0.000 (01117111)	diet, transportation to/from kindergarten
Mori 2011	Tokyo	Children in a kindergarten	8-oxodG in urine (ELISA)	76	β =0.216 (Ln(1-OHP))	Age, sex, Mn, As, vitamin A, vitamin C,
	, ~	u u	2 2 30 m anne (22.5.1)	, 0	F 3.2-3 (2m(1 31m/))	cotinine
Ren 2011	Boston, USA	Eldery subjects	8-oxodG in urine (ELISA)	320	PM2.5: 30.8% (95% CI: 9.3-52.2)	Age, BMI, smoking, vitamins
Rossner, Jr 2011	Prague, Czech Rep.	Policemen	8-oxodG in urine (ELISA)	59	β = 0.04* (PM2.5 stationary monitoring	Age, cotinine, cholesterol, triglycerides
··· · · , · · · · · ·	Y				station) β=0.16 (BaP) β=-0.02 (PAH)	<i>5</i> , , <i>g</i> ,

 $[\]neq$ r = correlation coefficient; β = linear regression coefficient (change in levels of oxidatively damaged nucleobases for every unit change in exposure); % per cent difference † MetS metabolic syndrome; ELISA enzyme-linked immunosorbent assay; BMI body mass index; CVD cardiovascular disease, NC_{size cut off} Number concentration.

Table 7a. Confounding in studies of oxidative damaged to nucleobases in blood or urine

Adjustment	Number of studies	References
Several relevant confounders including smoking	23	Autrup 1999, Brauner 2007, Cavallo 2006, Chuang 2003, Chuang 2007, De Coster 2008, Fan 2011, Han 2011, Harri 2005, Kim 2009, Lagorio 1994, Lai 2005, Lee 2010, Loft 1999, Palli 2009, Ren 2011, Rossner 2007, Singh 2007, Sorensen 2003a, Sorensen 2003b, Staessen 2001, Svecova 2008, Svecova 2009
Metabolic and/or DNA repair gene polymorphisms	5	Avogbe 2005, Bagryantseva2010, Buthbumrung 2008, Novotna 2007, Rossner 2011
Confounding not relevant	4	Allen 2009, Danielsen 2008, Suzuki 1995, Vinzents 2005,
No information about confounding factors	2	Ayi Fanou 2006, Calderón-Garcidueñas 1999,

Table 8 – Results on the association between air pollution and CAs in the cells of exposed individuals; logistic regression and comparison of means analyses.

First author, Year	Area/ Country	Exposure	Controlled Confounders	Groups Sample Size (Total: 1265)	Mean (% frequencies∆) ± SD	P
Knudsen, 1999	Copenhagen, Denmark	Air pollution (urban)	Metabolic genotypes, DNA repair, age, sex	office workers 41 postal workers 60 Bus drivers – high exposure 55	2.46 ± 1.98 2.12 ± 1.38 2.84 ± 1.87	Not significant
C 1000	C I D II'	TT 1 11 11 11 11	We list to the	Bus drivers – low + medium exposure 45	2.24 ± 1.57	Not significant
Sram 1999	Czech Republic	Urban air pollution	Maternal height and pre-pregnancy weight, parity, marital status, education and maternal smoking, season and the year of the study	Pregnant Mothers: Industrial + residential heating (Teplice) 131 Pregnant Mothers: Residents in agricultural districts	$1.54 \pm NA^{\dagger}$	
Kyrtopoulos, 2001	Athens and Halkida,	Air pollution (in city of	Smoking	(Prachatice) 48 Students in Athens (higher PAH† exposure & lower	$1.04 \pm NA^{\dagger}$	< 0.05
Kyrtopoulos, 2001	Greece	studying)	Smoking	PM2.5† exposure) 222 Students in Halkida (lower PAH exposure & higher	0.88±0.97	
Pungag 2002	Androne Tunker	Air mallytian (traffic	And say ampling habits	PM2.5 exposure) 149	1.06±1.12	Not significant
Burgaz, 2002	Ankara, Turkey	Air pollution (traffic	Age, sex, smoking habits	Traffic policemen 18	1.29±0.30	-0.05
		related)		Control group 5	0.26±0.14	< 0.05
				Taxi drivers 29	1.82±0.34	.0.01
C 2005	D C 1	DAIL 4 11	0 1: 1: 11: 4:	Control group 5	0.26±0.14	< 0.01
Sram, 2007	Prague, Czech Republic	c-PAHs† on respirable air particles (<2.5 m)	Smoking, medical histories	Sampling in January: higher PM† and PAH exposures 61 Sampling in March: lower PM and PAH exposures 61	0.27±0.18	
Zidzik, 2007	Kosice (Slovakia),	сРАН	Sex		0.16 ± 0.17	< 0.001
Ziuzik, 2007	Prague(Cz.Republic)	CLAII	Sex	Exposed policemen in Kosice 51	2.6±2.64	
	& Sofia (Bulgaria)			Controls in Kosice 55	2.0±2.04 2.14± 1.61	Not significant
	& Solia (Bulgaria)			Exposed policemen in Prague 52	2.33±1.53	Not significant
				Controls in Prague 50	1.94±1.28	Not significant
				Exposed policemen in Sofia 50	3.04±1.64	Not significant
				Controls in Sofia 45	1.79±0.77	< 0.05
				Exposed bus drivers in Sofia 50	3.6±1.63	<0.03
				Controls in Sofia 45	1.79±0.77	< 0.05
Balachandar, 2008	Tamilnadu, India	ETS†	Age	Group I : <6hrs exposure/day and <30yrs old	1.77=0.77	V0.03
Danachandar, 2000	Tammada, mara	E15	1150	Passive smokers 18	5.00 ± 1.68 ,	
				Controls 18	1.16 ± 0.92 ,	Significant
				Group II:>6hrs exposure/day and>30yrs old	1.10 ± 0.52,	Significant
				Passive smokers 25	9.04 ± 3.73	
				Controls 25	2.76 ± 2.12 .	Significant
				Controls 25	2.70 = 2.12.	Significant
Rossnerova, 2011	Prague and Ceske	Air pollution (urban vs.	Sex	Mothers in Prague (urban) 86	0.80 ± 0.27	< 0.001
,	Budejovice, Czech Republic	rural)		Mothers in Ceske Budejovice (rural) 92	0.61 ± 0.21	
					Linear Regression Coefficient (95% CI)	
Garcia-Suastegui,	Mexico City, Mexico	Air pollution – PM10	Unadjusted	91 individuals sampled during dry season	NA NA	0.669
2011		Air pollution – PM2.5	** **	00' 1' '1 1 1 1 1 1 1 1 1 1	274	0.399
		Air pollution – PM10 Air pollution – PM2.5	Unadjusted	80 individuals sampled during rainy season	NA	0.709 0.843
					Logistic regression OR^{∞} (95% CI)	
Rossner, 2011	Prague and Ostrawa, Czech Republic	Air pollution at residence	Age, benzene exposure, cotinine plasma levels, total, HDL, and LDL cholesterol levels, triglycerides, Vitamins a, C and E in plasma and various gene expressions	Subjects in Prague (less polluted) 64 Subjects in Ostrawa (more polluted) 75	$0.18 \ (0.05 \text{-} 0.67)^{\infty}$	0.010

† NA not available; PAH polycyclic aromatic hydrocarbons; PM2.5 particulate matter with dimater less than 2.5 microns; N/A not applicable; c-PAH carcinogenic polycyclic aromatic hydrocarbons; ETS environmental tobacco smoke.

 Δ Percentage of cells with chromosomal aberrations

Odds ratio of having chromosomal aberrations above median, for subjects in Prague compared to subjects in Ostrawa

Table 9 – Results on the association between air pollution and MN in peripheral blood cells of exposed individuals: linear regression analyses

First Author, Year	Area/ Country	Exposure	Controlled Confounders	Effect Measure≠	Sample Size (Total: 1478)	Subject desription	p
Neri, 2006	Review	Environmental Pollutants	Not applicable		1071	Children: 1-16 yrs old 4 studies in total – 4 with statistically significant results	
Ishikawa, 2006	Shenyang city,	Air pollution (ambient)	Smoking habits, sex, age, metabolic enzyme and		66	Female industrial	
	China		DNA repair gene polymorphisms	β: 1.57	63	Female rural residents	< 0.05
Pedersen, 2009	Copenhagen,	Residential traffic density	ETS exposure, use of open fireplace,				
	Denmark	(validated by indoor levels of	prepregnancy weight, folate levels, vitamin B12	β: -0.1	75	Women	
		nitrogen dioxide and PAH)	levels, maternal education and season of delivery	β: 0.4	69	Umbilical cords	0.02
				Mean (% frequencies) ± SD			
Merlo, 1997	Genova,	Ambient PAH concentrations	Sex	3.73 ± 1.6	82	Traffic police workers	
	Italy			4.03 ± 1.61	52	Urban residents	0.38
Rossnerova,	Prague and Ceske	Air pollution (urban vs. rural)	Sex	8.35 ± 3.06	86	Mothers in Prague (urban)	
2011	Budejovice, Czech Republic			6.47 ± 2.35	92	Mothers in Ceske Budejovice (rural)	< 0.001

 [≠] β = linear regression coefficient (change in micronuclei frequencies (frequency per 1000 cells) per unit change in exposure)
 † PBLs peripheral blood lymphocytes; N/A not applicable; PM10 particulate matter with dimater less than 10 microns; polycyclic aromatic hydrocarbons.

Table 10 - Results on the association between air pollution and methylation changes in the cells of exposed individuals.

First author, Year	Area/ Country	Exposure	Outcome	Controlled Confounders	Effect Measure≠	CI†	Sample Size (Total: 1499)	Subject desription	P
Baccarelli, 2007	Boston, USA	Ambient Black Carbon (hourly concentrations measured at a monitoring site approximately 1 km from the site of examination (7 day mean)) Ambient Black Carbon (hourly concentrations	LINE-1 methylation	Multiple clinical and environmental covariates	r: -0.11	(-0.18) (-0.04)	718	subjects from the Normative Aging Study	0.002 Not
Baccarelli, 2009	Boston, USA	measured at a monitoring site approximately 1 km from the site of examination (7 day mean)) PM2.5† concentrations (7day mean)	Alu methylation LINE-1 methylation	Multiple clinical and environmental covariates Age, BMI, cigarette smoking, pack- years, statin use, fasting blood glucose, diabetes mellitus, percent lymphocytes, and neutrophils in differential blood	r: -0.13	(-0.19) (-0.06)	718	subjects from the Normative Aging Study	significant
		PM2.5 concentrations (7day mean)	Alu methylation	count, day of the week, season, and outdoor temperature Age, BMI, cigarette smoking, pack-years, statin use, fasting blood glucose, diabetes mellitus, percent lymphocytes, and neutrophils in differential blood count, day of the week, season, and outdoor temperature					
Tarantini,	Brescia,				r: -0.01	(-0.07) (0.05)			0.71
2009	Northern Italy	PM10 (first day of the week and after 3 days of work) PM10 (first day of the week and after 3 days of	LINE-1 methylation Alu	Unadjusted	0.02%	SE: 0.11	63	workers	0.89
		work) PM10 (first day of the week and after 3 days of work)	methylation iNOS promoter	Unadjusted	0%	SE: 0.08			0.99
		PM10 (average level of individual exposure)	methylation LINE-1	Unadjusted Age, BMI, smoking, number of	-0.61%	SE: 0.26			0.02
		PM10 (average level of individual exposure)	methylation Alu	cigarettes/day Age, BMI, smoking, number of	β: -0.34	SE: 0.09			0.04
		PM10 (average level of individual exposure)	methylation iNOS	cigarettes/day Age, BMI, smoking, number of	β: -0.19	SE: 0.17			0.04
			promoter methylation	cigarettes/day	β: -0.55	SE: 0.58			0.34
Madrigano, 2011	New York, USA	PM2.5 (IQR increase over a 90 day period)	LINE1	Season, time, smoking, BMI, alcohol intake, medication, batch, % WBC type	0.03%	(-0.12) (0.18)	706	subjects from the Normative Aging Study	Not Significant
			Alu		0.03%	(-0.07) (0.13)		Study	Not
		Black Carbon (IQR increase over a 90 day period)	LINE1	Season, time, smoking, BMI, alcohol intake, medication, batch, % WBC type	-0.21%	(-0.50) (0.09)			Significant Not Significant
			Alu		-0.31%	(-0.12) (-0.50)			P<0.05
		SO4 (IQR increase over a 90 day period)	LINE1	Season, time, smoking, BMI, alcohol	-0.27%	(-0.02) (-0.52)			P<0.05
			Alu	intake, medication, batch, % WBC type	-0.03%	(-0.20) (0.13)			Not Significant
Herbstman, 2012	New York, USA	PAH exposure – prenatal	Global Methylation	Ethnicity	β: -0.11	(-0.21) (0.00)	164	cord blood samples	0.05

 \neq r = correlation coefficient; β = linear regression coefficient (change in DNA methylation levels (%5mC) per unit change in exposure); % per cent difference † CI confidence interval; LINE-1long interspersed nuclear element-1; PM10 particulate matter with diameter of less than 10 microns; tHcy total homocysteine; BMI body mass index; PM2.5 particulate matter with diameter of less than 2.5 microns; PAH polycyclic aromatic hydrocarbons.

Figure 1 - Flow Chart of Literature Review

^{*} For exidative damage search terms also included: "diesel exhaust", "wood smoke", and "biomass".

Figure 2 – Putative Mechanisms of cancer through oxidative damage from air pollution

Adapted from: Risom, L, P. Møller, and S. Loft (2005) Oxidative stress-induced DNA damage by air pollution, Mutat. Res. 592:119-137

Figure 3 - Funnel plot of the standard error of the standardized mean difference (SMD) vs the SMD of studies on DNA adducts (in a fixed effects model to get the pseudo CI lines).

NOTE: Three studies not reporting means and standard deviations were excluded (Nielsen 1996a, Nielsen 1996b, Marczynski 2005).

Figure 4 - Funnel plot of the standard error of the standardized mean difference (SMD) vs the SMD of all the studies on oxidative DNA damage shown in Table 5-Supplemental Material (in a fixed effects model to get the pseudo CI lines).

In the papers without report of SD this was estimated from the data as explained in the review and meta-analysis paper of Møller and Loft P 2010 (70).

Supplemental Material References

- Abbey DE NN. Long- term inhalable particles and other air pollutants related to mortality in nonsmokers. Am J Resp Crit Care Med 1999;:373–82.
- Allen J, Trenga CA, Peretz A, et al. Effect of diesel exhaust inhalation on antioxidant and oxidative stress responses in adults with metabolic syndrome. Inhal Toxicol 2009;21:1061–7.
- Autrup H, Daneshvar B, Dragsted LO, *et al.* Biomarkers for exposure to ambient air pollution-comparison of carcinogen-DNA adduct levels with other exposure markers and markers for oxidative stress. *Environ Health Perspect* 1999;**107**:233–8.
- Avogbe PH, Ayi-Fanou L, Autrup H, et al. Ultrafine particulate matter and high-level benzene urban air pollution in relation to oxidative DNA damage. Carcinogenesis 2005;26:613–20.
- Ayi-Fanou L, Avogbe PH, Fayomi B, et al. DNA-adducts in subjects exposed to urban air pollution by benzene and polycyclic aromatic hydrocarbons (PAHs) in Cotonou, Benin. Environ Toxicol 2011;26:93–102.
- Baccarelli A, Wright RO, Bollati V, et al. Rapid DNA Methylation Changes after Exposure to Traffic Particles. AmJRespirCritCare Med 2009;179:572–8.
- Baccarelli A, Zanobetti A, Martinelli I, et al. Air pollution, smoking, and plasma homocysteine. EnvironHealth Perspect 2007;115:176–81.
- Bagryantseva Y, Novotna B, Rossner P Jr, *et al.* Oxidative damage to biological macromolecules in Prague bus drivers and garagemen: impact of air pollution and genetic polymorphisms. *Toxicol Lett* 2010;**199**:60–8.
- Balachandar V, Kumar BL, Suresh K, et al. Evaluation of chromosome aberrations in subjects exposed to environmental tobacco smoke in Tamilnadu, India. BullEnvironContamToxicol 2008;81:270–6.
- Beelen R, Hoek G, van den Brandt PA, et al. Long-term exposure to traffic-related air pollution and lung cancer risk. Epidemiology 2008;19:702–10.
- Beeson WL, Abbey DE, Knutsen SF. Long-term concentrations of ambient air pollutants and incident lung cancer in California adults: results from the AHSMOG study. Adventist Health Study on Smog. *EnvironHealth Perspect* 1998; **106**:813–22.
- Binkova B, Lewtas J, Miskova I, et al. DNA adducts and personal air monitoring of carcinogenic polycyclic aromatic hydrocarbons in an environmentally exposed population. *Carcinogenesis* 1995:16:1037–46.
- Bräuner EV, Forchhammer L, Møller P, et al. Exposure to ultrafine particles from ambient air and oxidative stress-induced DNA damage. Environ Health Perspect 2007;115:1177–82.
- Brunekreef B, Beelen R, Hoek G, *et al.* Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in the Netherlands: the NLCS-AIR study. *ResRepHealth EffInst* 2009;(139):5–71; discussion 73–89.
- Buell P, Dunn JE, Breslow L. Cancer of the lung and Los-Angeles-type air pollution. Prospective study. *Cancer* 1967;20:2139–47.
- Burgaz S, Cakmak Demircigil G, Karahalil B, *et al.* Chromosomal damage in peripheral blood lymphocytes of traffic policemen and taxi drivers exposed to urban air pollution. *Chemosphere* 2002;47:57–64.
- Buthbumrung N, Mahidol C, Navasumrit P, *et al.* Oxidative DNA damage and influence of genetic polymorphisms among urban and rural schoolchildren exposed to benzene. *Chem Biol Interact* 2008;**172**:185–94.
- Calderón-Garcidueñas L, Wen-Wang L, Zhang YJ, *et al.* 8-hydroxy-2'-deoxyguanosine, a major mutagenic oxidative DNA lesion, and DNA strand breaks in nasal respiratory epithelium of children exposed to urban pollution. *Environ Health Perspect* 1999;**107**:469–74.
- Castaño-Vinyals G, D'Errico A, Malats N, et al. Biomarkers of exposure to polycyclic aromatic hydrocarbons from environmental air pollution. Occupational and Environmental Medicine 2004:61:e12.
- Cavallo D, Ursini CL, Carelli G, et al. Occupational exposure in airport personnel: characterization and evaluation of genotoxic and oxidative effects. Toxicology 2006;223:26–35.
- Chuang C. Oxidative DNA damage estimated by urinary 8-hydroxydeoxyguanosine: influence of taxi driving, smoking and areca chewing. *Chemosphere* 2003;**52**:1163–71.
- Chuang K-J, Chan C-C, Su T-C, et al. The Effect of Urban Air Pollution on Inflammation, Oxidative Stress, Coagulation, and Autonomic Dysfunction in Young Adults. Am J Respir Crit Care Med 2007;176:370–6.
- Danielsen PH, Bräuner EV, Barregard L, et al. Oxidatively damaged DNA and its repair after experimental exposure to wood smoke in healthy humans. Mutat Res 2008;642:37–42.
- De Coster S, Koppen G, Bracke M, et al. Pollutant effects on genotoxic parameters and tumor-associated protein levels in adults: a cross sectional study. Environ Health 2008;7:26–26.
- Dockery DW, Pope CA, Xu X, et al. An Association between Air Pollution and Mortality in Six U.S. Cities. NEnglJMed 1993;329:1753–9.
- Fan R, Wang D, Mao C, *et al.* Preliminary study of children's exposure to PAHs and its association with 8-hydroxy-2'-deoxyguanosine in Guangzhou, China. *Environ Int* Published Online First: 19 April 2011. doi:10.1016/j.envint.2011.03.021
- Ayi Fanou L, Mobio TA, Creppy EE, et al. Survey of air pollution in Cotonou, Benin--air monitoring and biomarkers. Sci Total Environ 2006;358:85–96.
- Filleul L, Rondeau V, Vandentorren S, et al. Twenty five year mortality and air pollution: results from the French PAARC survey. OccupEnvironMed 2005;62:453–60.

- Freire C, Abril A, Fernández MF, et al. Urinary 1-hydroxypyrene and PAH exposure in 4-year-old Spanish children. SciTotal Environ 2009;407:1562–9.
- García-Suástegui WA, Huerta-Chagoya A, Carrasco-Colín KL, et al. Seasonal variations in the levels of PAH-DNA adducts in young adults living in Mexico City. Mutagenesis 2011;26:385–91.
- Hales S, Blakely T, Woodward A. Air pollution and mortality in New Zealand: cohort study. *Journal of Epidemiology and Community Health* Published Online First: 21 October 2010. doi:10.1136/jech.2010.112490
- Han Y-Y, Donovan M, Sung F-C. Increased urinary 8-hydroxy-2'-deoxyguanosine excretion in long-distance bus drivers in Taiwan. Chemosphere 2010;79:942-8.
- Hansen ÅM, Wallin H, Binderup ML, et al. Urinary 1-hydroxypyrene and mutagenicity in bus drivers and mail carriers exposed to urban air pollution in Denmark. *Mutation Research/Genetic Toxicology and Environmental Mutagenesis* 2004;**557**:7–17.
- Hansen ÅM, Raaschou-Nielsen O, Knudsen LE. Urinary 1-hydroxypyrene in children living in city and rural residences in Denmark. *SciTotal Environ* 2005;347:98–105.
- Harri M, Svoboda P, Mori T, et al. Analysis of 8-hydroxydeoxyguanosine among workers exposed to diesel particulate exhaust: comparison with urinary metabolites and PAH air monitoring. Free Radic Res 2005;39:963–72.
- Hemminki K, Zhang LF, Krüger J, et al. Exposure of bus and taxi drivers to urban air pollutants as measured by DNA and protein adducts. Toxicol Lett 1994;72:171-4.
- Herbstman JB, Tang D, Zhu D, et al. Prenatal Exposure to Polycyclic Aromatic Hydrocarbons, Benzo[a]Pyrene-DNA Adducts and Genomic DNA Methylation in Cord Blood. Environmental Health Perspectives Published Online First: 17 January 2012. doi:10.1289/ehp.1104056
- Hu S-W, Chan Y-J, Hsu H-T, et al. Urinary levels of 1-hydroxypyrene in children residing near a coal-fired power plant. Environ Res 2011;111:1185–91.
- Ishikawa H, Tian Y, Piao F, et al. Genotoxic damage in female residents exposed to environmental air pollution in Shenyang city, China. Cancer Lett 2006;240:29–35.
- Jerrett M, Burnett RT, Ma R, et al. Spatial analysis of air pollution and mortality in Los Angeles. Epidemiology 2005;16:727–36.
- Katanoda K, Sobue T, Satoh H, *et al.* An Association Between Long-Term Exposure to Ambient Air Pollution and Mortality From Lung Cancer and Respiratory Diseases in Japan. *Journal of Epidemiology* 2011;**21**:132–43.
- Kim JY, Prouty LA, Fang SC, et al. Association between fine particulate matter and oxidative DNA damage may be modified in individuals with hypertension. J Occup Environ Med 2009:51:1158–66.
- Knudsen LE, Norppa H, Gamborg MO, et al. Chromosomal Aberrations in Humans Induced by Urban Air Pollution: Influence of DNA Repair and Polymorphisms of GlutathioneS-Transferase M1 and N-Acetyltransferase 2. Cancer Epidemiology Biomarkers & Prevention 1999;8:303–10.
- Krewski D, Burnett RT, Goldberg M, et al. Reanalysis of the Harvard Six Cities Study, Part I: Validation and Replication. InhalToxicol 2005;17:335–42.
- Kyrtopoulos SA, Georgiadis P, Autrup H, *et al.* Biomarkers of genotoxicity of urban air pollution: Overview and descriptive data from a molecular epidemiology study on populations exposed to moderate-to-low levels of polycyclic aromatic hydrocarbons: the AULIS project. *Mutation Research/Genetic Toxicology and Environmental Mutagenesis* 2001;**496**:207–28.
- Laden F, Schwartz J, Speizer FE, et al. Reduction in Fine Particulate Air Pollution and Mortality: Extended Follow-up of the Harvard Six Cities Study. AmJRespirCritCare Med 2006;173:667–72.
- Lagorio S, Tagesson C, Forastiere F, et al. Exposure to benzene and urinary concentrations of 8-hydroxydeoxyguanosine, a biological marker of oxidative damage to DNA. Occup Environ Med 1994;51:739–43.
- Lai C, Liou S, Lin H, et al. Exposure to traffic exhausts and oxidative DNA damage. Occup Environ Med 2005;62:216–22.
- Lee M-W, Chen M-L, Lung S-CC, et al. Exposure assessment of PM2.5 and urinary 8-OHdG for diesel exhaust emission inspector. Sci Total Environ 2010;408:505–10.
- Loft S, Poulsen HE, Vistisen K, et al. Increased urinary excretion of 8-oxo-2'-deoxyguanosine, a biomarker of oxidative DNA damage, in urban bus drivers. Mutat Res 1999;441:11–9.
- Madrigano J, Baccarelli A, Mittleman MA, *et al.* Prolonged exposure to particulate pollution, genes associated with glutathione pathways, and DNA methylation in a cohort of older men. *Environ Health Perspect* 2011;**119**:977–82.
- Marczynski B, Preuss R, Mensing T, *et al.* Genotoxic risk assessment in white blood cells of occupationally exposed workers before and after alteration of the polycyclic aromatic hydrocarbon (PAH) profile in the production material: comparison with PAH air and urinary metabolite levels. *Int Arch Occup Environ Health* 2005;**78**:97–108.
- Martínez-Salinas RI, Elena Leal M, Batres-Esquivel LE, et al. Exposure of children to polycyclic aromatic hydrocarbons in Mexico: assessment of multiple sources. Int Arch Occup Environ Health 2010;83:617–23.
- McDonnell WF, Nishino-Ishikawa N, Petersen FF, *et al.* Relationships of mortality with the fine and coarse fractions of long-term ambient PM10 concentrations in nonsmokers. *JExpoAnalEnvironEpidemiol* 2000;**10**:427–36.
- Merlo F, Andreassen A, Weston A, et al. Urinary excretion of 1-hydroxypyrene as a marker for exposure to urban air levels of polycyclic aromatic hydrocarbons. Cancer Epidemiology Biomarkers & Prevention 1998;7:147–55.
- Mills PK, Abbey D, Beeson WL, et al. Ambient air pollution and cancer in California Seventh-day Adventists. ArchEnvironHealth 1991;46:271–80.
- Møller P, Loft S. Oxidative Damage to DNA and Lipids as Biomarkers of Exposure to Air Pollution. *Environ Health Perspect* 2010;118:1126–36.

- Mori T, Yoshinaga J, Suzuki K, *et al.* Exposure to polycyclic aromatic hydrocarbons, arsenic and environmental tobacco smoke, nutrient intake, and oxidative stress in Japanese preschool children. *Sci Total Environ* 2011;**409**:2881–7.
- Nafstad P, Haheim LL, Oftedal B, et al. Lung cancer and air pollution: a 27 year follow up of 16 209 Norwegian men. Thorax 2003;58:1071–6.
- Neri M, Ugolini D, Bonassi S, *et al.* Children's exposure to environmental pollutants and biomarkers of genetic damage. II. Results of a comprehensive literature search and meta-analysis. *MutatRes* 2006;**612**:14–39.
- Nielsen PS, Okkels H, Sigsgaard T, et al. Exposure to urban and rural air pollution: DNA and protein adducts and effect of glutathione-S-transferase genotype on adduct levels. IntArchOccupEnvironHealth 1996;68:170–6.
- Nielsen PS, de Pater N, Okkels H, *et al.* Environmental air pollution and DNA adducts in Copenhagen bus drivers--Effect of GSTM1 and NAT2 genotypes on adduct levels. *Carcinogenesis* 1996;**17**:1021–7.
- Novotna B, Topinka J, Solansky I, et al. Impact of air pollution and genotype variability on DNA damage in Prague policemen. Toxicol Lett 2007;172:37–47.
- Palli D, Saieva C, Munnia A, et al. DNA adducts and PM10 exposure in traffic-exposed workers and urban residents from the EPIC-Florence City study. SciTotal Environ 2008;403:105–12.
- Palli D, Sera F, Giovannelli L, et al. Environmental ozone exposure and oxidative DNA damage in adult residents of Florence, Italy. Environ Pollut 2009;157:1521–5.
- Pavanello S, Bollati V, Pesatori AC, *et al.* Global and gene-specific promoter methylation changes are related to anti-B[a]PDE-DNA adduct levels and influence micronuclei levels in polycyclic aromatic hydrocarbon-exposed individuals. *IntJCancer* 2009;**125**:1692–7.
- Pavanello S, Pulliero A, Saia BO, et al. Determinants of anti-benzo[a]pyrene diol epoxide—DNA adduct formation in lymphomonocytes of the general population. *Mutation Research/Genetic Toxicology and Environmental Mutagenesis* 2006;**611**:54–63.
- Pedersen M, Wichmann J, Autrup H, et al. Increased micronuclei and bulky DNA adducts in cord blood after maternal exposures to traffic-related air pollution. EnvironRes 2009;109:1012–20.
- Peluso M, Munnia A, Palli D, et al. Bulky DNA adducts and lung cancer risk: a prospective study in EPIC investigation. AACR Meeting Abstracts 2005;2005:512-a.
- Peluso M, Srivatanakul P, Munnia A, et al. DNA adduct formation among workers in a Thai industrial estate and nearby residents. SciTotal Environ 2008;389:283–8.
- Perera F, Brenner D, Jeffrey A, et al. DNA adducts and Related Biomarkers in Populations Exposed to Environmental Carcinogens. 1991.
- Pope C, Thun M, Namboodiri M, et al. Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. AmJRespirCritCare Med 1995;151:669–74.
- Pope III CA, Burnett RT, Thun MJ, et al. Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution. JAMA 2002;287:1132–41.
- Pope CA, Burnett RT, Turner MC, *et al.* Lung Cancer and Cardiovascular Disease Mortality Associated with Ambient Air Pollution and Cigarette Smoke: Shape of the Exposure–Response Relationships. *Environmental Health Perspectives* 2011;**119**:1616–21.
- Raaschou-Nielsen O, Bak H, Sørensen M, et al. Air Pollution from Traffic and Risk for Lung Cancer in Three Danish Cohorts. Cancer Epidemiology Biomarkers & Prevention 2010;19:1284–91.
- Raaschou-Nielsen O, Andersen ZJ, Hvidberg M, et al. Lung Cancer Incidence and Long-Term Exposure to Air Pollution from Traffic. Environmental Health Perspectives 2011;119:860–5.
- Ren C, Fang S, Wright RO, et al. Urinary 8-hydroxy-2'-deoxyguanosine as a biomarker of oxidative DNA damage induced by ambient pollution in the Normative Aging Study. Occup Environ Med 2011;68:562–9.
- Rossner Jr. P, Uhlirova K, Beskid O, *et al.* Expression of XRCC5 in peripheral blood lymphocytes is upregulated in subjects from a heavily polluted region in the Czech Republic. *Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis* 2011;**713**:76–82.
- Rossner P Jr, Svecova V, Milcova A, et al. Oxidative and nitrosative stress markers in bus drivers. Mutat Res 2007;617:23–32.
- Rossner P Jr, Rossnerova A, Sram RJ. Oxidative stress and chromosomal aberrations in an environmentally exposed population. *Mutat Res* 2011;707:34–41.
- Rossnerova A, Spatova M, Pastorkova A, et al. Micronuclei levels in mothers and their newborns from regions with different types of air pollution. Mutat Res 2011;715:72–8.
- Ruchirawa M, Mahidol C, Tangjarukij C, *et al.* Exposure to genotoxins present in ambient air in Bangkok, Thailand--particle associated polycyclic aromatic hydrocarbons and biomarkers. *SciTotal Environ* 2002;**287**:121–32.
- Singh R, Kaur B, Kalina I, et al. Effects of environmental air pollution on endogenous oxidative DNA damage in humans. Mutat Res 2007;620:71–82.
- Sørensen M, Autrup H, Hertel O, et al. Personal exposure to PM2.5 and biomarkers of DNA damage. Cancer Epidemiol Biomarkers Prev 2003;12:191-6.
- Sørensen M, Skov H, Autrup H, *et al.* Urban benzene exposure and oxidative DNA damage: influence of genetic polymorphisms in metabolism genes. *The Science of The Total Environment* 2003;**309**:69–80.
- Sram RJ., Beskid O, Rössnerova A, *et al.* Environmental exposure to carcinogenic polycyclic aromatic hydrocarbons: The interpretation of cytogenetic analysis by FISH. *Toxicology letters* 2007;**172**:12–20.
- Srám RJ, Binková B, Rössner P, et al. Adverse reproductive outcomes from exposure to environmental mutagens. Mutat Res 1999;428:203–15.
- Staessen JA, Nawrot T, Hond ED, *et al.* Renal function, cytogenetic measurements, and sexual development in adolescents in relation to environmental pollutants: a feasibility study of biomarkers. *The Lancet* 2001;**357**:1660–9.

- Suzuki J, Inoue Y, Suzuki S. Changes in the urinary excretion level of 8-hydroxyguanine by exposure to reactive oxygen-generating substances. Free Radic Biol Med 1995;18:431-6.
- Svecova V, Rossner Jr. P, Dostal M, et al. Urinary 8-oxodeoxyguanosine levels in children exposed to air pollutants. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2009;662:37–43.
- Svecova V, Milcova A, Lnenickova Z, et al. Seasonal variability of oxidative stress markers in city bus drivers. Part I. Oxidative damage to DNA. Mutation Research 2008;642:14–20.
- Tarantini L, Bonzini M, Apostoli P, et al. Effects of particulate matter on genomic DNA methylation content and iNOS promoter methylation. EnvironHealth Perspect 2009;117:217–22.
- Topinka J, Sevastyanova O, Binkova B, et al. Biomarkers of air pollution exposure—A study of policemen in Prague. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2007:624:9–17.
- Topinka J., Binkova B., Mrackova G., et al. DNA adducts in human placenta as related to air pollution and to GSTM1 genotype. Mutation research Genetic toxicology and environmental mutagenesis 1997;390:59–68.
- Tuntawiroon J, Mahidol C, Navasumrit P, et al. Increased health risk in Bangkok children exposed to polycyclic aromatic hydrocarbons from traffic-related sources. Carcinogenesis 2007;28:816–22.
- Turner MC, Krewski D, Pope CA, et al. Long-term Ambient Fine Particulate Matter Air Pollution and Lung Cancer in a Large Cohort of Never-Smokers. American Journal of Respiratory and Critical Care Medicine 2011;184:1374 –1381.
- Vineis P, Hoek G, Krzyzanowski M, et al. Air pollution and risk of lung cancer in a prospective study in Europe. IntJCancer 2006;119:169–74.
- Vinzents PS, Møller P, Sørensen M, et al. Personal exposure to ultrafine particles and oxidative DNA damage. Environ Health Perspect 2005;113:1485–90.
- Whyatt RM, Santella RM, Jedrychowski W, et al. Relationship between ambient air pollution and DNA damage in Polish mothers and newborns. EnvironHealth Perspect 1998;106 Suppl 3:821–6.
- Yang K, Airoldi L, Pastorelli R, et al. Aromatic DNA adducts in lymphocytes of humans working at high and low traffic density areas. Chemico-Biological Interactions 1996;101:127–36.
- Yorifuji T, Kashima S, Tsuda T, et al. Long-term exposure to traffic-related air pollution and mortality in Shizuoka, Japan. OccupEnvironMed 2010;67:111–7.
- Zidzik J, Kalina I, Salagovic J, et al. Influence of PAHs in ambient air on chromosomal aberrations in exposed subjects: International study EXPAH. Mutation Research 2007;620:41-8.