SUPPLEMENTARY MATERIAL Title: Biomarkers of ambient air pollution and lung cancer: strength of evidence Christiana Demetriou^{1,6}, Ole Raaschou-Nielsen² Steffen Loft³, Peter Møller³, Roel Vermeulen⁴, Domenico Palli⁵, Marc Chadeau-Hyam¹, Wei W Xun¹, Paolo Vineis¹ | Table | of Contents | | |--------------|---|-------------| | Title o | of Item | Page | | • | Supplemental Material Table 1 – Prospective study results on the relationship between exposure to air pollution and lung cancer incidence and/or mortality, listed by study or cohort | 2 | | • | Supplemental Material Table 2 – Results on the association between air pollution and 1-OHP in the urine of exposed individuals: linear regression, logistic regression, and correlation analyses | 7 | | • | Supplemental Material Table 3 – Results on the association between air pollution and 1-OHP in the urine of exposed individuals: comparison of means analysis | 8 | | • | Supplemental Material Table 4 – Results on the association between air pollution and DNA adducts in exposed individuals; linear regression, logistic regression and correlation analyses | 9 | | • | Supplemental Material Table 5 – Results on the association between air pollution and DNA adducts in exposed individuals; comparison of means analysis Supplemental Material Table 6 - Results on the association between air pollution and oxidatively damaged nucleobases/deoxynucleosides in urine or mononuclear | 10 | | | blood cells; comparison of means analysis | 11 | | • | Supplemental Material Table 6a - Confounding in studies of DNA adducts | 13 | | • | Supplemental Material Table 7 - Results on the association between air pollution and oxidatively damaged nucleobases/deoxynucleosides in urine or mononuclear blood cells; linear regression and correlation analysis | 14 | | • | Supplemental Material Table 7a – Confounding factors controlled for in studies investigating oxidative damage to nucleobases | 15 | | • | Supplemental Material Table 8 – Results on the association between air pollution and CAs in the cells of exposed individuals; logistic regression and comparison of means analyses | 16 | | • | Supplemental Material Table 9 – Results on the association between air pollution and MN in peripheral blood cells of exposed individuals: linear regression analyses | 18 | | • | Supplemental Material Table 10 - Results on the association between air pollution and methylation changes in the cells of exposed individuals | 19 | | • | Supplemental Material Figure 1 - Flow Chart of Literature Review | 21 | | • | Supplemental Material Figure 2 - Putative Mechanisms of cancer through oxidative damage from air pollution | 22 | | • | Supplemental Material Figure 3 - Funnel plot of the standard error of the standardized mean difference (SMD) vs the SMD of studies on DNA adducts (in a fixed effects model to get the pseudo CI lines). | 23 | | • | Supplemental Material Figure 4 - Funnel plot of the standard error of the standardized mean difference (SMD) vs the SMD of all the studies on oxidative DNA damage shown in Table 6- Supplemental Material (in a fixed effects model to get the pseudo CI lines). | 24 | | • | Supplemental Material References | 25 | Table 1 – Prospective study results on the relationship between exposure to air pollution and lung cancer incidence and/or mortality, listed by study or cohort | First Author,
Year | Area/
Country | Exposure: | Outcome | Controlled Confounders | Number of
Subjects | RR† | CI† | |-----------------------|--------------------|---|---|---|-----------------------|----------------------|--------------------------------------| | 1 cui | Country | Laposure, | | AN STUDIES | Bubjects | TXIX | CI ₁ | | American Legion | Study | | | | | | | | Buell, 1967 | USA | >10 yrs in LAcounty
vs.other counties
>10yrs vs. <10yrs in | Lung Cancer
Mortality
Lung Cancer | Age, sex, smoking, size of birthplace | 336,571
person-yrs | 2.5 | *not
reported
*not | | 1.0777.50.00.00 | | LA county | Mortality | Age, sex, smoking, size of birthplace | | 1.26 | reported | | ASHMOG Study | | | | | | | | | Mills, 1991 | USA | Total Suspended Particulate (exceedance frequency of 200µg/m3) Ozone (exceedance | Cancer in females incidence Lung Cancer | Age, sex, education, ex-smoking, ETS†, and occupational exposure Age, sex, education, ex-smoking, ETS, and | 6,000 | 1.72 | 0.81-3.65 | | | | frequency of 10pphm) | incidence | occupational exposure | | 2.25 | 0.96-5.31 | | Beeson, 1998 | California,
USA | Ozone (100ppb increase) PM10† (IQR increase) SO ₂ (IQR increases) PM10 exceedance frequencies of 50 microg/m3 (IQR increase) PM10 exceedance | Lung Cancer incidence - males Lung Cancer Incidence - males Lung Cancer Incidence - males Lung Cancer Incidence - females | Pack-years of past cigarette smoking, educational level, and current alcohol use Pack-years of past cigarette smoking, educational level, and current alcohol use Pack-years of past cigarette smoking, educational level, and current alcohol use Smoking, Age | 6,338 | 3.56
5.21
2.66 | 1.35-9.42
1.96-13.99
1.62-4.39 | | | | frequencies of 60
microg/m3 (IQR
increase)
SO ₂ (IQR increases) | Lung Cancer
Incidence - females
Lung Cancer
Incidence - females | Smoking, Age Smoking, Age | | 1.25
2.14 | 0.57-2.71
1.36-3.37 | | Abbey, 1999 | USA | PM10 (IQR increase in mean conc.) PM10 (IQR increase in mean conc.) | Lung Cancer
Mortality in males
Lung Cancer
Mortality in females | Years of education, pack-years of ex
smoking, alcohol use
Years of education and pack-years of past
smoking | 6,338 | 3.36
1.33 | 1.57-7.19
0.60-1.96 | | | | Ozone (IQR increase in mean conc.) Ozone (IQR increase in mean conc.) SO ₂ (IQR increase in mean conc.) SO ₂ (IQR increase in mean conc.) NO ₂ (IQR increase in mean conc.) | Lung Cancer Mortality in males Lung Cancer Mortality in females Lung Cancer Mortality in males Lung Cancer Mortality in females Lung Cancer Mortality in males Lung Cancer | Years of education, pack-years of ex smoking, alcohol use Years of education and pack-years of past smoking Years of education, pack-years of ex smoking, alcohol use Years of education and pack-years of past smoking Years of education, pack-years of ex smoking | | 2.10
0.77
1.99
3.01
1.82 | 0.99-4.44
0.37-1.61
1.24-3.20
1.88-4.84
0.93-3.57 | |-----------------------|----------------|--|--|--|---------------------|--------------------------------------|---| | | | NO ₂ (IQR increase in mean conc.) | Lung Cancer
Mortality in females | Years of education and pack-years of past smoking | | 2.81 | 1.15-6.89 | | McDonnell, 2000 | USA | PM2.5† (IQR increase
= 24.3 μg/m3),
PM2.5-10 (IQR
increase = 9.7 μg/m3) | Lung Cancer
Mortality
Lung Cancer
Mortality | | 6,338 | 2.23
1.25 | 0.56-8.94
0.63-2.49 | | | | PM10 (IQR increase = | Lung Cancer | | | | | | American Cancer Pre | evention Study | 29.5μg/m3)
II | Mortality | | | 1.84 | 0.59-5.67 | | Pope, 2002 | USA | NO ₂ (10 microg/m3 increase) | Lung Cancer
Mortality | Age, sex, race, smoking, education, marital status, body mass, alcohol comsumption, occupation, and diet | 409-493
thousand | 1.14 | 1.04-1.23 | | Jerrett, 2005 | USA | PM10 (10 microg/m3 increase) | Lung Cancer
Mortality | Age, sex, race, education, smoking, marital status, BMI, alcohol consumption, occupational exposure, diet, and other ecological variables Age, sex, race, education, smoking, marital | 22,905 | 1.2 | 0.79-1.82 | | | | Ozone (10 microg/m3 increase) | Lung Cancer
Mortality | status, BMI, alcohol consumption, occupational exposure, diet, and other ecological variables Age, sex, race, education, smoking, marital status, BMI, alcohol consumption, | | 0.99 | 0.91-1.07 | | | | Distance to freeways (<500m vs. >500m) | Lung Cancer
Mortality | occupational exposure, diet, and other ecological variables | | 1.44 | 0.94-2.21 | | Turner, 2011 | USA | PM2.5 (10 microg/m3 increase) ACP
PM2.5 (10 microg/m3 | Lung Cancer
Mortality | Age, sex, smoking, educational attainment,
BMI, chronic lung disease
Age, sex, education, marital status, body | 188,699 | NA | 1.15-1.27 | | Pope, 2011 | USA | increase) | Lung Cancer
Mortality | mass, alcohol consumption, occupational exposures, smoking duration, and diet | 1.2million | 1.14 | 1.04-1.23 | | Harvard Six Cities St | - | | · | | | | | | Dockery, 1993 | USA |
Inhalable particles: | Lung Cancer | Age, sex, smoking, education, and BMI | | 1.27 | 1.08-1.48 | | | | Most polluted vs. Least polluted city | mortality | | | | | | | | |-------------------|---------------------------|--|--|---|-----------|--------------------------------------|---|--|--|--| | | | Fine particles: Most polluted vs. Least polluted city Sulphate particles: Most polluted vs. Least | Lung Cancer
mortality
Lung Cancer | Age, sex, smoking, education, and BMI | 8,111 | 1.26 | 1.08-1.47 | | | | | | | polluted city | mortality | Age, sex, smoking, education, and BMI | | 1.26 | 1.08-1.47 | | | | | Krewski, 2005 | USA | PM2.5 (most vs. least polluted city = 18.6 microg/m3 increase) | Lung Cancer
Mortality
Lung Cancer | Age, sex, smoking, education, BMI, diabetes, occupational exposure to dust, gases or fumes | 8,111 | 1.43 | 0.85-2.41 | | | | | Laden, 2006 | USA | PM2.5 | mortality | Age, sex, smoking, education, and BMI | 8,096 | 1.27 | 0.96-1.69 | | | | | EUROPEAN STUDIES | | | | | | | | | | | | Cohort of Oslo me | en | | | | | | | | | | | Nafstad, 2003 | Norway | NO(x) (per 10 μg/m3 -
home address)
SO ₂ (per 10 μg/m3) | Lung Cancer incidence Lung Cancer incidence | Age, smoking habits, and length of education Age, smoking habits, and length of education | 16,209 | 1.08
1.01 | 1.02-1.15
0.94-1.08 | | | | | French PAARC St | udy | , , | | | | | | | | | | Filleul, 2005 | France | Total Suspended Particulate (exceedance frequency of 200 μg/m3) Black Smoke (for 10 μg/m³) NO (for 10 μg/m³) NO ₂ (for 10 μg/m³) SO ₂ (for 10 μg/m³) | Lung Cancer
Mortality
Lung Cancer
Mortality
Lung Cancer
Mortality
Lung Cancer
Mortality
Lung Cancer
Mortality | Age, sex, BMI, smoking, occupational exposure, education | 14,284 | 0.97
0.97
0.97
0.97
0.99 | 0.94-1.01
0.93-1.01
0.94-1.01
0.85-1.10
0.92-1.07 | | | | | GENAIR Cohort S | otuay | | Age, BMI, education, gender, smoking, | | | | | | | | | Vineis, 2006 | Ten European
Countries | PM10 (10 microg/m3 increase) | Lung Cancer
Incidence | alcohol use, intake of meat, intake of fruit
and vegetables, time since recruitment, | 197 cases | 0.91 | 0.70-1.18 | | | | | | | NO ₂ (10 microg/m3 increase) | Lung Cancer
Incidence | country, occupational index and cotinine
Age, BMI, education, gender, smoking,
alcohol use, intake of meat, intake of fruit
and vegetables, time since recruitment,
country, occupational index and cotinine
Age, BMI, education, gender, smoking, | 556 controls | 1.14 | 0.78-1.67 | |----------------------------|-------------------|--|--|---|---------------|------|-----------| | | | SO ₂ (10 microg/m3 increase) Proximity of residence to major road (exposed vs. nonexposed) | Lung Cancer Incidence Lung Cancer Incidence | alcohol use, intake of meat, intake of fruit
and vegetables, time since recruitment,
country, occupational index and cotinine
Age, BMI, education, gender, smoking,
alcohol use, intake of meat, intake of fruit
and vegetables, time since recruitment,
country, occupational index and cotinine | | 1.08 | 0.89-1.30 | | Netherlands Cohor | t Study on Diet a | ± ' | merdence | country, occupational index and commit | | 1.31 | 0.02 2.07 | | Beelen, 2008 | Netherlands | Black smoke concentration Traffic intensity on | Lung Cancer
incidence
Lung Cancer | Age, sex, smoking status, area-level socioeconomic status Age, sex, smoking status, area-level | 40,114 | 1.47 | 1.01-2.16 | | | | nearest road | incidence | socioeconomic status | | 1.11 | 0.88-1.41 | | | | Living near a major
road
Black smoke (per 10 | Lung Cancer incidence Lung Cancer | Age, sex, smoking status, area-level socioeconomic status Age, sex, smoking status, area-level | | 1.55 | 0.98-2.43 | | Brunekreef, 2009 | Netherlands | μg/m3) Traffic intensity | Mortality | socioeconomic status | 120,000 | 1.03 | 0.88-1.20 | | | | (increase of 10,000
motor vehicles/day)
Black smoke (per 10 | Lung Cancer Mortality Lung Cancer | Age, sex, smoking status, area-level socioeconomic status Age, sex, smoking status, area-level | | 1.07 | 0.96-1.19 | | Diet, Cancer and H | aalth cahart stu | μg/m3) | Incidence | socioeconomic status | | 1.47 | 1.01-2.16 | | Diet, Cancer and II | eartii Conort Stu | uy | | | | | | | Raaschou-
Nielsen, 2011 | Denmark | NO_x at residence (per 100 μg/m3 increase)
Traffic load at residence | Lung Cancer
Incidence | Age, smoking, ETS, length of school attendance, fruit intake, and employment | 52,970 | 1.09 | 0.79-1.51 | | | | (per 10 ⁴ vehicle
km/day) | Lung Cancer
Incidence | Age, smoking, ETS, length of school attendance, fruit intake, and employment | 52,970 | 1.03 | 0.90-1.19 | | Three Prospective (| Cohorts | | | | | | | | - | Conorts | ſ | | Smoking (status, duration, and intensity), | 679 cases | | | | Raaschou-
Nielsen, 2010 | Denmark | NOx ^J (30-72 μg/m3 vs.
<30 μg/m3) | Lung Cancer
Incidence | educational level, body mass index, and alcohol consumption. Smoking (status, duration, and intensity), | 3481 controls | 1.30 | 1.07-1.57 | | | | NOx (>72 μg/m3 vs.
<30 μg/m3) | Lung Cancer
Incidence | educational level, body mass index, and alcohol consumption. | | 1.45 | 1.12-1.88 | ## OTHER STUDIES | Pope, 1995 | USA | Most vs. Least polluted:
Sulphates
Most vs. Least polluted: | Lung Cancer
mortality
Lung Cancer | Smoking | 552,138 | 1.15 | 1.09-1.22 | |----------------|-------------|---|---|---|-------------|-------|-------------| | | | Fine particles NO ₂ (10 microg/m3 | mortality
Lung Cancer
mortality - non | Smoking | | 1.17 | 1.09-1.26 | | Yorifuji, 2010 | Japan | increase) | smokers | Smoking Sex, age, smoking status, pack-years, smoking status of family members living together, daily green and yellow vegetable consumption, daily fruit consumption, and | 14,001 | 1.3 | 0.85-1.93 | | Katanoda, 2011 | Japan | PM2.5 (10 microg/m3 increase) | Lung Cancer
mortality | use of indoor charcoal or briquette braziers for heating Sex, age, smoking status, pack-years, smoking status of family members living together, daily green and yellow vegetable consumption, daily fruit consumption, and | 63,520 | 1.24 | 1.12-1.37 | | | | NO2 (10 microg/m3 increase) | Lung Cancer
mortality | use of indoor charcoal or briquette braziers for heating Sex, age, smoking status, pack-years, smoking status of family members living together, daily green and yellow vegetable consumption, daily fruit consumption, and | 63,520 | 1.26 | 1.07-1.48 | | | | SO2 (10 microg/m3 increase)
PM10(1microg/m3 | Lung Cancer
mortality
Lung Cancer | use of indoor charcoal or briquette braziers for heating | 63,520
1 | 1.17 | 1.10-1.26 | | Hales, 2011 | New Zealand | increase) | mortality | Age, sex, ethnicity | 050 222 | 1.015 | 0.004-1.026 | Table 2 - Results on the association between air pollution and 1-OHP in the urine of exposed individuals: linear regression, logistic regression, and correlation analyses. | First author,
Year | Area/
Country | Exposure | Controlled Confounders | Effect Measure≠ | Sample Size (Total: 541) | Subject desription | P | |---------------------------|------------------|--|--|-------------------------------------|--------------------------|---|---------| | Castaño-
Vinyals, 2004 | Review | B[a]P | Not applicable | r: 0.76 | 17 | Pairs of data - log transformed means - from different studies | 0.038 | | Hansen, 2004 | Copenhagen, | B[a]P†
Environmental pollution | Job, gender, NAT2 phenotype, age, | r: 0.83 | | personal sampling of B(a)P: mean values | 0.04 | | 114110011, 2004 | Denmark | 1 | vehicle exhaust, cooked food mutagens, physical exercise | OR†: 1.51 (male) /
1.38 (female) | 60
88 | bus drivers | 0.08 | | | | | | , , | | mail carriers | 0.00 | | Hansen, 2005 | Denmark | Residence in urban vs. rural areas | Gender, time spent outside | OR: 1.29 | 102
100 | children in Copenhagen
children from rural residences | 0.03 | | | | One additional hour | Gender, residence | OR: 1.58 | 102 | children in Copenhagen | -0.001 | | Freire, 2009 | Granada, Spain | spent outside/day
NO2 (predicted) | Exposure to ETS† and cooking appliance | β: 0.401 | 100
93 | children from rural residences
children
with predicted exposure to NO2≥22.50
μg,m ⁻³ / | < 0.001 | | | | | | | 81 | children with predicted exposure to NO2<22.50 µg,m ⁻³ | 0.006 | | Hu, 2011 | Taiwan | Residence near a coal fired power plant (PAH | Age, gender, ETS, dietary exposure, and traffic | OR: 1.85
95%CI(1.43, 2.40) | 146 | Children in high exposure community 1 vs, Low exposure community 1 | 0.000 | | | | in air) | | OR: 1.65
95% CI(1.30, 2.09) | 88 | Children in high exposure community 2 vs, Low exposure community 1 | NA | $[\]neq$ r = correlation coefficient; β = =linear regression coefficient (change in 1-OHP levels (7icromole/mol) for every unit change in exposure); OR = logistic regression odds ratio \dagger B[a]P Benzo [a] Pyrene; OR odds ratio; ETS environmental tobacco smoke. Table 3 – Results on the association between air pollution and 1-OHP in the urine of exposed individuals: comparison of means analysis. | First author, Year | Area/
Country | Exposure | Controlled
Confounders | Groups
Sample Size (Total: 742) | Mean
(micromol/mol) ±
SD (unless otherwise
stated) | P | |--------------------------------|---|--|---|---|---|---| | Ruchirawa, 2002 | Bangkok, Thailand | Environmental air pollution | Smoking | Traffic policemen 41
Office policemen 40 | 0.181±0.078
0.173±0.151 | 0.044 | | Hansen, 2004 Tuntawiroon, 2007 | Copenhagen,
Denmark Bangkok and
Chonburi, Thailand | Environmental pollution PAH† from traffic related sources | Job, gender, NAT2 phenotype, age, vehicle exhaust, cooked food mutagens, physical exercise Job, gender, NAT2 phenotype, age, vehicle exhaust, cooked food mutagens, physical exercise Age and lifestyle (i.e. ETS†,diet, transportation, medication etc.) | Bus drivers – all 117samples Mail Carriers – all 93samples Mail carriers Working outdoors 56samples Mail Carriers Working indoors 37samples Bangkok schoolchildren 115 Group matched provincial school children – Day 0 69 | 0.19 (Range: 0.05-1.60)
0.11 (Range: 0.02-0.75)
0.14 (Range: 0.02-0.75)
0.08 (Range: 0.02-0.57)
0.18±0.01
0.1±0.01 | <0.001
<0.001
<0.0001 | | | | | | Bangkok schoolchildren Day 1 115
Group matched provincial school children – Day
1 69 | 0.22±0.02
0.12±0.01 | <0.0001 | | Freire, 2009 | Granada, Spain | Residence in
urban vs. rural
areas | Exposure to ETS† and cooking appliance | 4yr old children living in urban 118
4yr old children living in rural areas 56 | 0.060 ± 0.040
0.054 ± 0.055 | 0.20 | | Martinez-Salinas, 2010 | Mexico | Traffic related air pollution | NA NA | Children in area with low vehicular traffic 39
Children in area with high vehicular traffic 17
Children in all communities of the study 258 | 0.8 ± 0.2
0.2 ± 0.2 | <0.05
>0.05
*P-values compared to
children from all
communities | | Hu, 2011 | Taiwan | Residence near a
coal fired power
plant (PAH in air) | NA | High Exposure Community -1 146 High Exposure Community -2 88 Low Exposure Community -1 86 Low Exposure Community -2 49 | $\begin{array}{c} 0.186 \pm 0.148 \\ 0.194 \pm 0.143 \\ 0.113 \pm 0.082 \\ 0.122 \pm 0.089 \end{array}$ | NA | [†] PAH polycyclic aromatic hydrocarbons; ETS environmental tobacco smoke. Table 4 – Results on the association between air pollution and DNA adducts in exposed individuals; linear regression, logistic regression and correlation analyses | First author,
Year | Area/
Country | Exposure | Controlled Confounders | Effect
Measure≠ | Sample Size (Total: 1787) | Subject desription | P | |---------------------------|---------------------------------|--|--|-----------------------|---------------------------|--|--------------------| | Binkova, 1995 | Czech Republic | Outdoor air pollution –
individual PAH† | Age, active and passive smoking, consumption of fried or smoked food, job category | r: 0.541 | 21 | Non smoking women working outdoors up to 8 hours – gardeners or postal workers | 0.016 | | Whyatt, 1998 | Krakow, Poland | Ambient pollution at
mother's place of residence
Ambient pollution at place of | Smoking, dietary PAH, use of coal stoves, home or occupational exposures to PAH & other organics Smoking, dietary PAH, use of coal stoves, home or | β: 1.77 | 19 | mothers not employed away from home | 0.05 | | | | residence | occupational exposures to PAH and other organics. | β: 1.73 | 23 | newborns of mothers (high pollution / low pollution group) | 0.03 | | Sørensen, 2003 | | | | | | | | | Castaño-Vinvals, | Copenhagen | Personal PM2.5 | Smoking, diet, season | ß=-0.0035 | 75 | Students monitored 4 seasons of a year | 0.31 | | 2004
Peluso, 2005 | Review
10 European countries | B[a]P† (stationary meas.)
O ₃ † levels | Not applicable Age, gender, educational level, country and batch | r: 0.6 | 12 | pairs of data | 0.038 | | , | 1 | | | β: 0.066 | 564 | EPIC cohort subjects | 0.0095 | | Neri, 2006 | Review | Environmental pollutants (including ETS† exposure) | Not applicable | Not applicable | 178 | Newborns – 17yr olds
2 studies in total – 2 with statistically
significant results | Not
applicable | | Pavanello, 2006 | North-East Italy | B[a]P indoor exposure | Smoking, diet, area of residence, traffic near house, | | | | | | Palli, 2008 | Florence City, Italy | PM10† (from high traffic | outdoor exposure
Smoking | β: 0.973 | 457 | municipal workers (non smoking) | 0.012 | | | | stations) | | r: 0.562 | 16 | traffic exposed workers | 0.02 | | Peluso, 2008 | Thailand | Industrial estate residence | Smoking habits, age, gender | OD+ 1.65 | 72
50 | Industrial estate residents | -0.05 | | | | | Smoking habits, age, gender | OR†: 1.65
OR: 1.44 | 50
64 | control district residents PAH exposed workers | < 0.05 | | | | | Smoking nabits, age, gender | OK. 1.44 | 72 | industrial estate residents | < 0.05 | | Pavanello, 2009 | | | | | | | | | | Poland | 1-pyrenol | NA† | r: 0.67 | 92 | coke oven workers and controls | < 0.0001 | | Pedersen, 2009 | Copenhagen, Denmark | Residential traffic density | ETS†, use of open fireplace, pre-pregnancy weight, folate levels, vitamin B12 levels, maternal education and season of delivery | β: 0.6 / 0.7 | 75 /69 | Women /umbilical cords | < 0.01 | | Garcia-Suastegui,
2011 | Mexico City, Mexico | PM2.5 | Various risk alleles | r: NR | 92 | Young adults living in Mexico City | 0.013 | | | | PM10 | Various risk alleles | r: NR | 92 | Young adults living in Mexico City | 0.035 | | Herbstman, 2012 | USA | PAH exposure – measured in both air and urine | NA | r: NR | NR | 152 participants – prenatal exposure, DNA adducts in cord blood | Not
significant | $[\]neq$ r = correlation coefficient; β =linear regression coefficient (change in DNA adduct levels (adducts/10^8 nucleotides) for every unit change in exposure); OR = logistic regression odds ratio † PAH polycyclic aromatic hydrocarbons, PM10 particulate matter of diameter less than 10 microns; B[a]P Benzo [a] Pyrene; O₃ ozone; NA not available; ETS environmental tobacco smoke; OR odds ratio Table 5 – Results on the association between air pollution and DNA adducts in exposed individuals; comparison of means analysis. | First author,
Year | Area/
Country | Exposure | Controlled
Confounders | Groups
Sample Size (Total: 1044) | Mean adducts/ 10^8 nucleotides ± SD (unless otherwise stated) | P | |---------------------------------|--|--|--|---|---|------------------------------| | Perera, 1991 | Poland | Environmental air pollution | NA† | Residents in industrial area 20
Rural controls 21 | 30.4±13.5
11.01±22.6 | < 0.05 | | Hemminki, 1994 | Stockholm,
Sweeden | Traffic related air pollution | Age, smoking | Bus drivers – urban routes 26 Bus drivers – sub urban routes 23 Taxi drivers – mixed routes 19 Controls 22 | 0.9 ± 0.35 1.4 ± 0.48 1.6 ± 0.91 1.0 ± 0.32 | Non sig.
<0.001
<0.010 | | Nielsen, 1996 | Denmark | Environmental air pollution | Smoking, PAH† rich diet | Bus drivers in Central Copenhagen 49 Rural controls 60 | Median: 1.214
Range: 0.142-22.24
Median: 0.074 | | | Nielsen, 1996 (2) | Denmark and
Greece | Environmental air pollution | Smoking, sex | Students in urban universities 74 Students in agricultural colleges 29 | Range: 0.003-8.876
Median: 0.205
Median: 0.152 | 0.001 | | Yang 1996 | Milan, Italy | Traffic related air pollution | Sex, age, smoking habits | News stand workers at high traffic areas 31 News stand workers at low traffic areas 22 | $ 2.2 \pm 1.0 \\ 2.2 \pm 1.2 $ | 0.02 | | Topinka, 1997 | Teplice
&
Prachatice, N&S
Bohemia | Residence in Industrial area | NA† | Placenta samples- industrial polluted area (winter): GSTM-genotype 15 Placenta samples –agricultural area (winter): GSTM- | 1.49 ± 0.70 | | | Merlo, 1997 | Genova, | Ambient PAH concentrations | NA† | genotype 17 Traffic police workers 94 Urban residents 52 | 0.96 ± 0.55
1.48 ± 1.35
1.01 ± 0.63 | 0.027
0.007 | | Ruchirawa, 2002 | Italy
Bangkok, Thailand | Environmental air pollution | Smoking, sex | Traffic Policemen 41 Office duty policemen 40 | 1.01 ± 0.63
1.6±0.9
1.2±1.0 | 0.007 | | Marczynski, 2005 | Germany | PAH in air (ambient and personal monitoring) | NA† | Samples from 16 workers(increased PAH exposure)
Samples from 16 workers¥ (reduced PAH exposure) | Range: 0.5 – 1.19Range: <0.5 – 0.09 | < 0.0001 | | Topinka, 2007 Tuntawiroon, 2007 | Prague, Czech
Republic
Bangkok and | c-PAH† (personal exposure) c-PAH and B[a]P† | Smoking, ocuupational duration Age and lifestyle (i.e. ETS†, | 109 policemen – January (highest exposure)
109 policemen – March | 2.08±1.60
1.66±0.65 | < 0.0001 | | 1 untawn 0011, 2007 | Chonburi, Thailand | C-FAIT and B[a]F | transportation, medication, diet etc.) | Bangkok schoolchildren 115
Provincial school children (group matching) 69 | 0.45±0.03
0.09±0.00 | < 0.0001 | | Fanou, 2011 | Cotonou, Benin | Environmental air pollution | NΑ† | Taxi-motorbike drivers 13 Intermediate exposure suburban group 20 | 24.6±6.4
2.1±0.6 | < 0.001 | | | | Environmental air pollution | NA† | Street food vendors 16
Intermediate exposure suburban group 20 | 34.7±9.8
2.1±0.6 | < 0.001 | | | | Environmental air pollution | NA† | Gasoline salesmen 20
Intermediate exposure suburban group 20 | 37.2±8.1
2.1±0.6 | <0.001 | | | | Environmental air pollution | NA† | Street side residents 11 Intermediate exposure suburban group 20 | 23.78±6.9
2.1±0.6 | <0.001 | $[\]dagger$ N/A not applicable; NA not available; PAH polycyclic aromatic hydrocarbons; c-PAH carcinogenic polycyclic aromatic hydrocarbons; B[a]P benzo [a] pyrene; ETS environmental tobacco smoke Ψ The sample sizes reported in the summary tables refer to subjects with measurements available both before and after change in work conditions Table 6 - Results on the association between air pollution and oxidatively damaged nucleobases/deoxynucleosides in urine or mononuclear blood cells; comparison of means analysis | First author, Year | Area, country | Exposure definition/source
Referents' definition | Biomarker | Groups
Sample size (Total: 2827) | Level (Mean ± SD,
unless otherwise
stated) | Controlled confounders | |--|--|---|---|---|---|---| | Suzuki 1995 | Japan | Sampling before and after a stay in a street | 8-oxoGua in urine
(HPLC-ECD) | 3 | After:9.9±2.5
Before: 4.22±2.0
(pooled data from several
timepoints 0-24 after exp.) | Cross-over study | | Calderon-
Garciduenas 1999 | Mexico | Children in urban and low-polluted area | 8-oxodG in nasal
epithelial cells
(immunohistochemistry) | Exposed: 86
Controls: 12 | $602 \pm 195*$
210 ± 122 | NA† | | Autrup 1999; Loft
1999
Staessen 2001 | Copenhagen, Denmark Belgium | Bus drivers in the city center and
rural/suburban controls
Adolescents from industrial and rural
areas | 8-oxodG in urine (HPLC-ECD)
8-oxodG in urine (HPLC-ECD) | Exposed: 29
Controls:20
Peer: 100
Wilrijk: 42
Hoboken: 58 | 1.74 ± 4,69
1.54 ± 4.29
0.44 (0.40-0.48)
0.57 (0.49-0.66)*
0.49 (0.42-0.56)
Geometric mean and 95%
CI | Age, BMI†, metabolic and DNA repair phenotype
Sex, smoking | | Chuang 2003 | Taiwan | Taxi-drivers and controls | 8-oxodG in urine
(ELISA)† | Exposed: 95
Controls: 75 | $0.33 \pm 0.20 * $
0.20 ± 0.14 | Age, education, exercise | | Lai 2005 | Taipei city, Taiwan | Highway toll station workers and controls | 8-oxodG in urine (ELISA) | Exposed: 47
Controls: 24 | 13.3±7.1*
8.4±6.2 | Age, smoking | | Harri 2005 | Finland | Garage/waste workers and controls | 8-oxodG in urine and
MNBC (HPLC-ECD) | Urine: Exposed: 29 Controls: 36 | Winter:
1.52 ± 0.44
1.56 ± 0.61
Summer:
1.61±0.33
1.43±0.4 | Age, smoking, BMI | | Vinzents 2005 | Copenhagen, Denmark | Sampling after cycling in traffic- | FPG sites in MNBC | MNBC:
Exposed: 19
Controls: 18 | 4.84± 0.17
4.11 ±0.16
Traffic: 0.08 (0-0.04)* | Cross-over study | | vinzents 2000 | Copennagen, Benmark | intense streets or laboratory | TT G Sites in TVITABLE | 13 | Lab: 0.02 (0-0.04) | Closs over stady | | Avogbe 2005 | Rep. of Benin | Subjects from urban and rural areas | FPG sites in MNBC | Taximoto: 24
Roadside: 37
Suburban: 42
Rural: 27 | 1620 ± 310 *
1250 ± 198 *
1110 ± 188 *
650 ± 160 | Metabolic genes | | Fanou 2006 | Rep. of Benin | Taxi-moto drivers and controls | 8-oxodG in MNBC
(HPLC-ECD) | Exposed: 35
Controls: 6 | 2.05±1.25*
1.11±0.82 | NA† | | Cavallo 2006 | Italy | Airport personnel and controls | FPG sites in MNBC | Exposed: 41
Controls: 31 | 55.86 ± 12.85*
43.01 ± 7.97 | Age, smoking, dietary habits | | Bräuner 2007 | Copenhagen, Denmark | Sampling before and after controlled exposure to street PM | FPG sites in MNBC | 29 | Air: 0.53 (0.37-0.65)*
FA†:0.38 (0.31-0.53)
Median and quartiles | Age, sex, smoking, CVD†, BMI | | Singh 2007 | Prague (Czech Rep.)
Kosice (Slovakia)
Sofia (Bulgaria) | City policemen, bus drivers and controls | $\begin{array}{l} 8\text{-}oxodG~(LC\text{-}MS/MS)\\ M_1dG~(immunoslot~blot)\\ In~MNBC \end{array}$ | Exposed: 98
Controls: 105
Exposed: 198
Controls: 156 | 33.0±30.1
29.2±21.2
58.3±37.5
49.2±30.3 | Smoking, demographic variables, diet | | Novotna 2007 | Prague, Czech Rep. | Policemen and controls sampled in different seasons | ENDOIII/FPG sites in MNBC | Exposed: 54 Controls: 11 | Jan: 2.91 ± 1.84 *
Sep: 2.12 ± 1.62
Jan: 1.36 ± 1.53 | Metabolic and DNA repair genotypes | | Rossner, Jr. 2007, | Prague, Czech Rep. | Bus drivers and controls sampled in | 8-oxodG in urine | Exposed: 50 | Sep: 1.22 ± 0.96
$7.59 \pm 2.25*$ | Medical history, lifestyle | | **** | | 1 1100 | (77.70.1) | | 5.50 | | |-------------------|------------------------|--------------------------------------|--------------------------|-----------------|---------------------------|---| | 2008 | | there different seasons | (ELISA) | | 6.73 ± 2.48 * | | | | | | | G . 1 . 50 | 5.67 ± 2.50 * | | | | | | | Controls: 50 | 6.29 ± 2.59 | | | | | | | | 5.51 ± 2.36 | | | D 411 | · · · | | | T | 3.82 ± 1.73 | 36.1.1 | | Buthbumrung 2008 | Thailand | Schoolchildren in Bangkok and rural | 8-oxodG in leukocytes | Exposed: 40 | 0.25 ± 0.13 | Metabolic genes | | | | controls | and urine (HPLC-ECD) | Controls: 32 | 0.08 ± 0.34 | | | | | | | Exposed 43 | 2.16 ± 1.84 | | | | | | | Controls: 32 | 1.32 ± 1.24 | | | Danielsen 2008 | Sweden | Sampling before and after controlled | 8-oxodG | 13 | 16.4% (95% CI: -6.9,45.5) | Cross-over study | | | | exposure to wood smoke | 8-oxoGua in urine: | | 79.3% (95% CI -12.9,269) | | | | | | HPLC-GC/MS | | -15% (95% CI:-31.1,4.9) | | | | | | FPG sites in MNBC | | | | | Palli 2009 | Florence, Italy | Metropolitan area | FPG sites in MNBC | Exposed 44 | 5.0 ± 3.06 | Sex, smoking, season | | | | | | Controls: 27 | 4.11 ± 3.96 | | | Svecova 2009 | Teplice and Prachatice | Children | 8-oxodG in urine (ELISA) | Teplice: 495 | 14.6 (3.1-326.5) | Ethinicity, mothers smoking, education, | | | (Czech Rep.) | | | Prachatice:399 | 15.2 (3.0-180.8) | sex, age, atopic diseases | | Bagryantseva 2010 | Praque, Czech Rep. | Bus drivers, garage men and office | 8-oxodG in urine (ELISA) | Bus drivers: 50 | 5.67 ± 2.5* | Age, vitamins, plasma lipids, metabolic and | | g_; | | workers | | Garage men: 20 | $6.54 \pm 6.9*$ | DNA repair genes | | | | | | Controls: 50 | 3.82 ± 1.73 | | | | | | EndoIII/Fpg sites in | Bus drivers: 50 | 2.35 ± 2.17 | | | | | | lymphocytes | Garage men: 20 | 2.56 ± 2.52 | | | | | | Tymphocytes | Controls: 50 | 2.55 ±2.86 | | | | | | | Controls, 50 | 2.33 ±2.00 | | | Han 2010 | Taiwan | Bus drivers and office workers | 8-oxodG in urine (ELISA) | Exposed: 120 | $9.5 \pm 5.7*$ | Age, BMI, smoking. Alcohol, areca | | | | | | Controls: 58 | 7.3 ± 5.4 | chewing, tea, coffee energy drink, exercise | | Fan 2011 | GuangZhou City, China | Children | 8-oxodG in urine (ELISA) | Exposed: 39 | 20.87 ± 14.42 | Age, sex, height, weight, passive smoking, | | | | | | Controls: 35 | 16.78 ± 13.30 | diet, transportation tool and time taken to/from school | | Rossner, Jr, 2011 | Prague and Ostrava | Policemen and office workers | 8-oxodG in urine (ELISA) | Ostrava: 75 | 4.28 ± 2.27 | Age, passive smoking, cotinine, plasma | | - ,- , - | (Czech Rep.) | | | Praque: 65 | 4.84 ± 1.61 | lipids, vitamins, DNA repair gens | | | | | | * | | 1 6 | [†] BMI body mass index; NA not available; CVD cardiovascular disease; ELISA enzyme-linked immunosorbent assay; FA filtered air Table 6a. Confounding in studies of DNA adducts | Adjustment | Number of studies | References | |---|-------------------
--| | Several relevant confounders including smoking but not diet | 7 | Hemminki 1994, Nielsen 1996, Peluso 2005,
Peluso 2008, Ruchirawa 2002, Topinka 2007,
Yang 1996, | | Several relevant confounders including smoking including diet | 7 | Binkova 1995, Nielsen 1996 (2), Pavanello
2006, Pedersen 2009, Sorensen 2003,
Tuntawiroon 2007, Whyatt 1998, | | Smoking | 1 | Palli 2008 | | Various Risk Alleles | 1 | Garcia-Suastegui 2011 | | Confounding not relevant | 1 | Marczynski 2005 | | No information about confounding factors | 6 | Ayi Fanou 2011, Herbstman 2012, Merlo
1997, Pavanello 2009, Perera 1991, Topinka
1997 | Table 7 - Results on the association between air pollution and oxidatively damaged nucleobases/deoxynucleosides in urine or mononuclear blood cells; linear regression and correlation analysis | First author, year | Area, country | Exposure definition/source | Biomarkers and methods | Sample size
(Total: 1642) | Effect Measure≠ | Controlled confounders | |------------------------------|-------------------------|---|-------------------------------|------------------------------|--|---| | Lagorio 1994 | Rome Italy | Filling station attendants | 8-oxodG in urine (HPLC-ECD) | (10tal. 1042) | | Age, length of employment, smoking, | | Lagorio 1774 | Rome Rary | Timing station attendants | o oxodo in unine (Tir Le EeD) | 65 | r = 0.34* (benzene) | exposure to X-ray | | Sørensen 2003a | Copenhagen, Denmark | Students living in the metropolitan area | 8-oxodG (HPLC-ECD) in urine | 00 | $\beta = 0.010*$ (8-oxodG, lymphocytes) | Season, sex, outdoor temperature | | | 1 2 | | and MNBC | | $\beta = -0.007 \text{ (8-oxodG, urine)}$ | 1 | | | | | FPG/EndoIII sites in MNBC | 50 | $\beta = 0.0025$ (EndoIII) | | | | | | | | $\beta = 0.014 \text{ (FPG)}$ | | | Sørensen 2003b | Copenhagen, Denmark | Healthy subjects living in the | FPG/EndoIII sites in MNBC | | $r_s = 0.39*$ | Smoking, type of work, sex, genotype | | | | metropolitan area | 8-oxodG (HPLC-ECD) in urine | 40 | | (metabolism) | | | | | and MNBC | | Non-significant | | | Vinzents 2005 | Copenhagen, Denmark | Sampling after cycling in traffic-intense | FPG sites in MNBC | | β =1.5x10 ⁻³ per ultrafine particle time | Cross-over study | | D | | streets or laboratory | The second | 15 | weighted exposure unit | i gral prais i i i | | Bräuner 2007 | Copenhagen, Denmark | Sampling before and after controlled | FPG sites in MNBC | 20 | $NC_{12}\dagger : \beta = -0.033$ | Age, sex, smoking, CVD†, BMI† included | | | | exposure to street PM | | 29 | NC_{23} : $\beta = 0.066*$ | in model | | Chuang 2007 | Taipei, Taiwan | College students living in the | 8-oxodG in plasma (ELISA) | | NC ₅₇ : β=0.040*
PM10: -9.2%, (95% CI: -21.5;3.2) | Sex, age, BMI, weekday, temperature, | | Chuang 2007 | raipei, raiwan | metropolitan area | 8-0x0dO III piasina (ELISA) | | PM10: -9.2%, (95% CI: -21.5;5.2)
PM2.5: -5.0% (95% CI: -14.3-4.4) | relative humidity | | | | metropontan area | | 76 | O3: 2.2% (95% CI: 0.9;3.5) | relative numberty | | De Coster 2008 | Flanders, Belgium | Industrial and urban areas | 8-oxodG in urine (ELISA) | 70 | $\beta = 0.179 \text{ (95\% CI: 0.077-0.282)}$ with | Age, Sex, recent smoking | | De Costel 2000 | randers, Belgium | madstrar and aroun arous | o oxodo in dime (EDIS/1) | 399 | 1-OHP as biomarker of internal | rige, bea, recent smoking | | | | | | 5,, | exposure | | | Svecova 2009 | Teplice&Prachatice | Children living in the two areas | 8-oxodG in urine (ELISA) | Teplice: 495 | r | Ethinicity, mothers smoking, education, sex | | | (Czech Rep.) | C | . , | Prachatice:399 | β=0.16* (air pollutants) | age, atopic diseases | | Allen 2009 | Washington, USA | Subjects with MetS with controlled | 8-oxodG in urine (ELISA) † | | | Cross-over study | | | | exposure to diesel exhaust | | 10 | $\beta = 0.087 (95\% \text{ CI: } -0.13; 0.31)$ | | | Kim 2009 | Boston, USA | Subjects with hypertension and controls | 8-oxodG in urine (ELISA) | | β =-0.60 (hypertensive) | Age, sex, smoking, time of the day | | | | (panel study) | | 21 | β =1.1 (controls) | | | Bagryantseva 2010 | Praque, Czech Rep. | Bus drivers, garage men and office | 8-oxodG in urine (ELISA) | 120 | β = 0.105 /BaP | Age, vitamins, plasma lipids, metabolic and | | | | workers | | 120 | $\beta = 0.026 \text{ (PAH)}$ | DNA repair genes | | | | | EndoIII/FPG sites in | 120 | β =-0.62 (BaP) | | | | | | lymphocytes | | β=-0-056 (PAH) | | | Lee 2010 | Taiwan | Inspection station workers and controls | 8-oxodG in urine (ELISA) | Exposed:11 | | Smoking, cooking at home | | Lee 2010 | 1 diwaii | inspection station workers and controls | o-oxodo ili ulille (ELISA) | Controls: 32 | β =7.47 (SE = 3.3)* | Smoking, cooking at nome | | Fan 2011 | GuangZhou City, China | Children in a kindergarten | 8-oxodG in urine (ELISA) | 74 | r=0.055 (OH-PAH) | Age, sex, height, weight, passive smoking, | | I WII WVII | Guangzaiou City, Cillia | Children in a kindergarten | o oxodo in unite (LLIDA) | 77 | 1-0.000 (01117111) | diet, transportation to/from kindergarten | | Mori 2011 | Tokyo | Children in a kindergarten | 8-oxodG in urine (ELISA) | 76 | β =0.216 (Ln(1-OHP)) | Age, sex, Mn, As, vitamin A, vitamin C, | | | , ~ | u u | 2 2 30 m anne (22.5.1) | , 0 | F 3.2-3 (2m(1 31m/)) | cotinine | | Ren 2011 | Boston, USA | Eldery subjects | 8-oxodG in urine (ELISA) | 320 | PM2.5: 30.8% (95% CI: 9.3-52.2) | Age, BMI, smoking, vitamins | | Rossner, Jr 2011 | Prague, Czech Rep. | Policemen | 8-oxodG in urine (ELISA) | 59 | β = 0.04* (PM2.5 stationary monitoring | Age, cotinine, cholesterol, triglycerides | | ··· · · , · · · · · · | Y | | | | station)
β=0.16 (BaP)
β=-0.02 (PAH) | <i>5</i> , , <i>g</i> , | $[\]neq$ r = correlation coefficient; β = linear regression coefficient (change in levels of oxidatively damaged nucleobases for every unit change in exposure); % per cent difference † MetS metabolic syndrome; ELISA enzyme-linked immunosorbent assay; BMI body mass index; CVD cardiovascular disease, NC_{size cut off} Number concentration. Table 7a. Confounding in studies of oxidative damaged to nucleobases in blood or urine | Adjustment | Number of studies | References | |--|-------------------|---| | Several relevant confounders including smoking | 23 | Autrup 1999, Brauner 2007, Cavallo 2006,
Chuang 2003, Chuang 2007, De Coster 2008,
Fan 2011, Han 2011, Harri 2005, Kim 2009,
Lagorio 1994, Lai 2005, Lee 2010, Loft 1999,
Palli 2009, Ren 2011, Rossner 2007, Singh
2007, Sorensen 2003a, Sorensen 2003b,
Staessen 2001, Svecova 2008, Svecova 2009 | | Metabolic and/or DNA repair gene polymorphisms | 5 | Avogbe 2005, Bagryantseva2010,
Buthbumrung 2008, Novotna 2007, Rossner
2011 | | Confounding not relevant | 4 | Allen 2009, Danielsen 2008, Suzuki 1995,
Vinzents 2005, | | No information about confounding factors | 2 | Ayi Fanou 2006, Calderón-Garcidueñas 1999, | Table 8 – Results on the association between air pollution and CAs in the cells of exposed individuals; logistic regression and comparison of means analyses. | First author,
Year | Area/
Country | Exposure | Controlled
Confounders | Groups
Sample Size (Total: 1265) | Mean (%
frequencies∆) ± SD | P | |-----------------------|---------------------------------------|---|--|--|---|-----------------| | Knudsen, 1999 | Copenhagen, Denmark | Air pollution (urban) | Metabolic genotypes, DNA repair, age, sex | office workers 41 postal workers 60 Bus drivers – high exposure 55 | 2.46 ± 1.98 2.12 ± 1.38 2.84 ± 1.87 | Not significant | | C 1000 | C I D II' | TT 1 11 11 11 11 | We list to the | Bus drivers – low + medium exposure 45 | 2.24 ± 1.57 | Not significant | | Sram 1999 | Czech Republic | Urban air pollution | Maternal height and pre-pregnancy weight,
parity, marital status, education and maternal
smoking, season and the year of the study | Pregnant Mothers: Industrial + residential heating
(Teplice) 131
Pregnant Mothers: Residents in agricultural districts | $1.54 \pm NA^{\dagger}$ | | | Kyrtopoulos, 2001 | Athens and Halkida, | Air pollution (in city of | Smoking | (Prachatice) 48 Students in Athens (higher PAH† exposure & lower | $1.04 \pm NA^{\dagger}$ | < 0.05 | | Kyrtopoulos, 2001 | Greece | studying) | Smoking | PM2.5† exposure) 222
Students in Halkida (lower PAH exposure & higher | 0.88±0.97 | | | Pungag 2002 | Androne Tunker | Air mallytian (traffic | And say ampling habits | PM2.5 exposure) 149 | 1.06±1.12 | Not significant | | Burgaz, 2002 | Ankara, Turkey | Air pollution (traffic | Age, sex, smoking habits | Traffic policemen 18 | 1.29±0.30 | -0.05 | | | | related) | | Control group 5 | 0.26±0.14 | < 0.05 | | | | | | Taxi drivers 29 | 1.82±0.34 | .0.01 | | C 2005 | D C 1 | DAIL 4 11 | 0 1: 1: 11: 4: | Control group 5 | 0.26±0.14 | < 0.01 | | Sram, 2007 | Prague, Czech
Republic | c-PAHs† on respirable air particles (<2.5 m) | Smoking,
medical histories | Sampling in January: higher PM† and PAH exposures 61
Sampling in March: lower PM and PAH exposures 61 | 0.27±0.18 | | | Zidzik, 2007 | Kosice (Slovakia), | сРАН | Sex | | 0.16 ± 0.17 | < 0.001 | | Ziuzik, 2007 | Prague(Cz.Republic) | CLAII | Sex | Exposed policemen in Kosice 51 | 2.6±2.64 | | | | & Sofia (Bulgaria) | | | Controls in Kosice 55 | 2.0±2.04
2.14± 1.61 | Not significant | | | & Solia (Bulgaria) | | | Exposed policemen in Prague 52 | 2.33±1.53 | Not significant | | | | | | Controls in Prague 50 | 1.94±1.28 | Not significant | | | | | | Exposed policemen in Sofia 50 | 3.04±1.64 | Not significant | | | | | | Controls in Sofia 45 | 1.79±0.77 | < 0.05 | | | | | | Exposed bus drivers in Sofia 50 | 3.6±1.63 | <0.03 | | | | | | Controls in Sofia 45 | 1.79±0.77 | < 0.05 | | Balachandar, 2008 | Tamilnadu, India | ETS† | Age | Group I : <6hrs exposure/day and <30yrs old | 1.77=0.77 | V0.03 | | Danachandar, 2000 | Tammada, mara | E15 | 1150 | Passive smokers 18 | 5.00 ± 1.68 , | | | | | | | Controls 18 | 1.16 ± 0.92 , | Significant | | | | | | Group II:>6hrs exposure/day and>30yrs old | 1.10 ± 0.52, | Significant | | | | | | Passive smokers 25 | 9.04 ± 3.73 | | | | | | | Controls 25 | 2.76 ± 2.12 . | Significant | | | | | | Controls 25 | 2.70 = 2.12. | Significant | | Rossnerova, 2011 | Prague and Ceske | Air pollution (urban vs. | Sex | Mothers in Prague (urban) 86 | 0.80 ± 0.27 | < 0.001 | | , | Budejovice, Czech
Republic | rural) | | Mothers in Ceske Budejovice (rural) 92 | 0.61 ± 0.21 | | | | | | | | Linear Regression
Coefficient (95% CI) | | | Garcia-Suastegui, | Mexico City, Mexico | Air pollution – PM10 | Unadjusted | 91 individuals sampled during dry season | NA NA | 0.669 | | 2011 | | Air pollution – PM2.5 | ** ** | 00' 1' '1 1 1 1 1 1 1 1 1 1 | 274 | 0.399 | | | | Air pollution – PM10
Air pollution – PM2.5 | Unadjusted | 80 individuals sampled during rainy season | NA | 0.709
0.843 | | | | | | | Logistic regression OR^{∞} (95% CI) | | | Rossner, 2011 | Prague and Ostrawa,
Czech Republic | Air pollution at residence | Age, benzene exposure, cotinine plasma levels, total, HDL, and LDL cholesterol levels, triglycerides, Vitamins a, C and E in plasma and various gene expressions | Subjects in Prague (less polluted) 64 Subjects in Ostrawa (more polluted) 75 | $0.18 \ (0.05 \text{-} 0.67)^{\infty}$ | 0.010 | † NA not available; PAH polycyclic aromatic hydrocarbons; PM2.5 particulate matter with dimater less than 2.5 microns; N/A not applicable; c-PAH carcinogenic polycyclic aromatic hydrocarbons; ETS environmental tobacco smoke. Δ Percentage of cells with chromosomal aberrations Odds ratio of having chromosomal aberrations above median, for subjects in Prague compared to subjects in Ostrawa Table 9 – Results on the association between air pollution and MN in peripheral blood cells of exposed individuals: linear regression analyses | First Author,
Year | Area/
Country | Exposure | Controlled Confounders | Effect
Measure≠ | Sample Size
(Total: 1478) | Subject desription | p | |-----------------------|-------------------------------|---------------------------------|---|---------------------------|------------------------------|--|---------| | Neri, 2006 | Review | Environmental Pollutants | Not applicable | | 1071 | Children: 1-16 yrs old
4 studies in total – 4 with
statistically significant results | | | Ishikawa, 2006 | Shenyang city, | Air pollution (ambient) | Smoking habits, sex, age, metabolic enzyme and | | 66 | Female industrial | | | | China | | DNA repair gene polymorphisms | β: 1.57 | 63 | Female rural residents | < 0.05 | | Pedersen, 2009 | Copenhagen, | Residential traffic density | ETS exposure, use of open fireplace, | | | | | | | Denmark | (validated by indoor levels of | prepregnancy weight, folate levels, vitamin B12 | β: -0.1 | 75 | Women | | | | | nitrogen dioxide and PAH) | levels, maternal education and season of delivery | β: 0.4 | 69 | Umbilical cords | 0.02 | | | | | | Mean (% frequencies) ± SD | | | | | Merlo, 1997 | Genova, | Ambient PAH concentrations | Sex | 3.73 ± 1.6 | 82 | Traffic police workers | | | | Italy | | | 4.03 ± 1.61 | 52 | Urban residents | 0.38 | | Rossnerova, | Prague and Ceske | Air pollution (urban vs. rural) | Sex | 8.35 ± 3.06 | 86 | Mothers in Prague (urban) | | | 2011 | Budejovice,
Czech Republic | | | 6.47 ± 2.35 | 92 | Mothers in Ceske Budejovice (rural) | < 0.001 | [≠] β = linear regression coefficient (change in micronuclei frequencies (frequency per 1000 cells) per unit change in exposure) † PBLs peripheral blood lymphocytes; N/A not applicable; PM10 particulate matter with dimater less than 10 microns; polycyclic aromatic hydrocarbons. Table 10 - Results on the association between air pollution and methylation changes in the cells of exposed individuals. | First
author,
Year | Area/
Country | Exposure | Outcome | Controlled Confounders | Effect
Measure≠ | CI† | Sample Size
(Total: 1499) | Subject
desription | P | |--------------------------|------------------|---|---|---|--------------------|-----------------|------------------------------|---|-----------------------------------| | Baccarelli,
2007 | Boston, USA | Ambient Black Carbon (hourly concentrations measured at a monitoring site approximately 1 km from the site of examination (7 day mean)) Ambient Black Carbon (hourly concentrations | LINE-1
methylation | Multiple clinical and environmental covariates | r: -0.11 | (-0.18) (-0.04) | 718 | subjects from the
Normative Aging
Study | 0.002
Not | | Baccarelli,
2009 | Boston, USA | measured at a monitoring site approximately 1 km from the site of examination (7 day mean)) PM2.5† concentrations (7day mean) | Alu
methylation
LINE-1
methylation | Multiple clinical and environmental covariates Age, BMI, cigarette smoking, pack- years, statin use, fasting blood glucose, diabetes mellitus, percent lymphocytes, and neutrophils in differential blood | r: -0.13 | (-0.19) (-0.06) | 718 | subjects from the
Normative Aging
Study | significant | | | | PM2.5 concentrations (7day mean) | Alu
methylation | count, day of the week, season, and outdoor temperature Age, BMI, cigarette smoking, pack-years, statin use, fasting blood glucose, diabetes mellitus, percent lymphocytes, and neutrophils in differential blood count, day of the week, season, and outdoor temperature | | | | | | | Tarantini, | Brescia, | | | | r: -0.01 | (-0.07) (0.05) | | | 0.71 | | 2009 | Northern Italy | PM10 (first day of the week and after 3 days of work) PM10 (first day of the week and after 3 days of | LINE-1
methylation
Alu | Unadjusted | 0.02% | SE: 0.11 | 63 | workers | 0.89 | | | | work) PM10 (first day of the week and after 3 days of work) | methylation
iNOS
promoter | Unadjusted | 0% | SE: 0.08 | | | 0.99 | | | | PM10 (average level of individual exposure) | methylation
LINE-1 | Unadjusted
Age, BMI, smoking, number of | -0.61% | SE: 0.26 | | | 0.02 | | | | PM10 (average level of individual exposure) | methylation
Alu | cigarettes/day Age, BMI, smoking, number of | β: -0.34 | SE: 0.09 | | | 0.04 | | | | PM10 (average level of individual exposure) | methylation iNOS | cigarettes/day Age, BMI, smoking, number of | β: -0.19 | SE: 0.17 | | | 0.04 | | | | | promoter
methylation | cigarettes/day | β: -0.55 | SE: 0.58 | | | 0.34 | | Madrigano,
2011 | New York,
USA | PM2.5 (IQR increase over a 90 day period) | LINE1 | Season, time, smoking, BMI, alcohol intake, medication, batch, % WBC type | 0.03% | (-0.12) (0.18) | 706 | subjects from the
Normative Aging
Study | Not
Significant | | | | | Alu | | 0.03% | (-0.07) (0.13) | | Study | Not | | | | Black Carbon (IQR increase over a 90 day period) | LINE1 | Season, time, smoking, BMI, alcohol intake, medication, batch, % WBC type | -0.21% | (-0.50) (0.09) | | | Significant
Not
Significant | | | | | Alu | | -0.31% | (-0.12) (-0.50) | | | P<0.05 | | | | SO4 (IQR increase over a 90 day period) | LINE1 | Season, time, smoking, BMI, alcohol | -0.27% | (-0.02) (-0.52) | | | P<0.05 | | | | | Alu | intake, medication, batch, % WBC type | -0.03% | (-0.20) (0.13) | | | Not
Significant | | Herbstman,
2012 | New York,
USA | PAH exposure – prenatal | Global
Methylation | Ethnicity | β: -0.11 | (-0.21) (0.00) | 164 | cord blood
samples | 0.05 | \neq r = correlation coefficient; β = linear regression coefficient (change in DNA methylation levels (%5mC) per unit change in exposure); % per cent difference † CI confidence interval; LINE-1long interspersed nuclear element-1; PM10 particulate matter with diameter of less than 10 microns; tHcy total homocysteine; BMI body mass index; PM2.5 particulate matter with diameter of less than 2.5 microns; PAH polycyclic aromatic hydrocarbons. Figure 1 - Flow Chart of Literature Review ^{*} For exidative damage search terms also included: "diesel exhaust", "wood smoke", and "biomass". Figure 2 – Putative Mechanisms of cancer through oxidative damage from air pollution Adapted from: Risom, L, P. Møller, and S. Loft (2005) Oxidative stress-induced DNA damage by air pollution, Mutat. Res. 592:119-137 Figure 3 - Funnel plot of the standard
error of the standardized mean difference (SMD) vs the SMD of studies on DNA adducts (in a fixed effects model to get the pseudo CI lines). NOTE: Three studies not reporting means and standard deviations were excluded (Nielsen 1996a, Nielsen 1996b, Marczynski 2005). Figure 4 - Funnel plot of the standard error of the standardized mean difference (SMD) vs the SMD of all the studies on oxidative DNA damage shown in Table 5-Supplemental Material (in a fixed effects model to get the pseudo CI lines). In the papers without report of SD this was estimated from the data as explained in the review and meta-analysis paper of Møller and Loft P 2010 (70). ## **Supplemental Material References** - Abbey DE NN. Long- term inhalable particles and other air pollutants related to mortality in nonsmokers. Am J Resp Crit Care Med 1999;:373–82. - Allen J, Trenga CA, Peretz A, et al. Effect of diesel exhaust inhalation on antioxidant and oxidative stress responses in adults with metabolic syndrome. Inhal Toxicol 2009;21:1061–7. - Autrup H, Daneshvar B, Dragsted LO, *et al.* Biomarkers for exposure to ambient air pollution-comparison of carcinogen-DNA adduct levels with other exposure markers and markers for oxidative stress. *Environ Health Perspect* 1999;**107**:233–8. - Avogbe PH, Ayi-Fanou L, Autrup H, et al. Ultrafine particulate matter and high-level benzene urban air pollution in relation to oxidative DNA damage. Carcinogenesis 2005;26:613–20. - Ayi-Fanou L, Avogbe PH, Fayomi B, et al. DNA-adducts in subjects exposed to urban air pollution by benzene and polycyclic aromatic hydrocarbons (PAHs) in Cotonou, Benin. Environ Toxicol 2011;26:93–102. - Baccarelli A, Wright RO, Bollati V, et al. Rapid DNA Methylation Changes after Exposure to Traffic Particles. AmJRespirCritCare Med 2009;179:572–8. - Baccarelli A, Zanobetti A, Martinelli I, et al. Air pollution, smoking, and plasma homocysteine. EnvironHealth Perspect 2007;115:176–81. - Bagryantseva Y, Novotna B, Rossner P Jr, *et al.* Oxidative damage to biological macromolecules in Prague bus drivers and garagemen: impact of air pollution and genetic polymorphisms. *Toxicol Lett* 2010;**199**:60–8. - Balachandar V, Kumar BL, Suresh K, et al. Evaluation of chromosome aberrations in subjects exposed to environmental tobacco smoke in Tamilnadu, India. BullEnvironContamToxicol 2008;81:270–6. - Beelen R, Hoek G, van den Brandt PA, et al. Long-term exposure to traffic-related air pollution and lung cancer risk. Epidemiology 2008;19:702–10. - Beeson WL, Abbey DE, Knutsen SF. Long-term concentrations of ambient air pollutants and incident lung cancer in California adults: results from the AHSMOG study. Adventist Health Study on Smog. *EnvironHealth Perspect* 1998; **106**:813–22. - Binkova B, Lewtas J, Miskova I, et al. DNA adducts and personal air monitoring of carcinogenic polycyclic aromatic hydrocarbons in an environmentally exposed population. *Carcinogenesis* 1995:16:1037–46. - Bräuner EV, Forchhammer L, Møller P, et al. Exposure to ultrafine particles from ambient air and oxidative stress-induced DNA damage. Environ Health Perspect 2007;115:1177–82. - Brunekreef B, Beelen R, Hoek G, *et al.* Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in the Netherlands: the NLCS-AIR study. *ResRepHealth EffInst* 2009;(139):5–71; discussion 73–89. - Buell P, Dunn JE, Breslow L. Cancer of the lung and Los-Angeles-type air pollution. Prospective study. *Cancer* 1967;20:2139–47. - Burgaz S, Cakmak Demircigil G, Karahalil B, *et al.* Chromosomal damage in peripheral blood lymphocytes of traffic policemen and taxi drivers exposed to urban air pollution. *Chemosphere* 2002;47:57–64. - Buthbumrung N, Mahidol C, Navasumrit P, *et al.* Oxidative DNA damage and influence of genetic polymorphisms among urban and rural schoolchildren exposed to benzene. *Chem Biol Interact* 2008;**172**:185–94. - Calderón-Garcidueñas L, Wen-Wang L, Zhang YJ, *et al.* 8-hydroxy-2'-deoxyguanosine, a major mutagenic oxidative DNA lesion, and DNA strand breaks in nasal respiratory epithelium of children exposed to urban pollution. *Environ Health Perspect* 1999;**107**:469–74. - Castaño-Vinyals G, D'Errico A, Malats N, et al. Biomarkers of exposure to polycyclic aromatic hydrocarbons from environmental air pollution. Occupational and Environmental Medicine 2004:61:e12. - Cavallo D, Ursini CL, Carelli G, et al. Occupational exposure in airport personnel: characterization and evaluation of genotoxic and oxidative effects. Toxicology 2006;223:26–35. - Chuang C. Oxidative DNA damage estimated by urinary 8-hydroxydeoxyguanosine: influence of taxi driving, smoking and areca chewing. *Chemosphere* 2003;**52**:1163–71. - Chuang K-J, Chan C-C, Su T-C, et al. The Effect of Urban Air Pollution on Inflammation, Oxidative Stress, Coagulation, and Autonomic Dysfunction in Young Adults. Am J Respir Crit Care Med 2007;176:370–6. - Danielsen PH, Bräuner EV, Barregard L, et al. Oxidatively damaged DNA and its repair after experimental exposure to wood smoke in healthy humans. Mutat Res 2008;642:37–42. - De Coster S, Koppen G, Bracke M, et al. Pollutant effects on genotoxic parameters and tumor-associated protein levels in adults: a cross sectional study. Environ Health 2008;7:26–26. - Dockery DW, Pope CA, Xu X, et al. An Association between Air Pollution and Mortality in Six U.S. Cities. NEnglJMed 1993;329:1753–9. - Fan R, Wang D, Mao C, *et al.* Preliminary study of children's exposure to PAHs and its association with 8-hydroxy-2'-deoxyguanosine in Guangzhou, China. *Environ Int* Published Online First: 19 April 2011. doi:10.1016/j.envint.2011.03.021 - Ayi Fanou L, Mobio TA, Creppy EE, et al. Survey of air pollution in Cotonou, Benin--air monitoring and biomarkers. Sci Total Environ 2006;358:85–96. - Filleul L, Rondeau V, Vandentorren S, et al. Twenty five year mortality and air pollution: results from the French PAARC survey. OccupEnvironMed 2005;62:453–60. - Freire C, Abril A, Fernández MF, et al. Urinary 1-hydroxypyrene and PAH exposure in 4-year-old Spanish children. SciTotal Environ 2009;407:1562–9. - García-Suástegui WA, Huerta-Chagoya A, Carrasco-Colín KL, et al. Seasonal variations in the levels of PAH-DNA adducts in young adults living in Mexico City. Mutagenesis 2011;26:385–91. - Hales S, Blakely T, Woodward A. Air pollution and mortality in New Zealand: cohort study. *Journal of Epidemiology and Community Health* Published Online First: 21 October 2010. doi:10.1136/jech.2010.112490 - Han Y-Y, Donovan M, Sung F-C. Increased urinary 8-hydroxy-2'-deoxyguanosine excretion in long-distance bus drivers in Taiwan. Chemosphere 2010;79:942-8. - Hansen ÅM, Wallin H, Binderup ML, et al. Urinary 1-hydroxypyrene and mutagenicity in bus drivers and mail carriers exposed to urban air pollution in Denmark. *Mutation Research/Genetic Toxicology and Environmental Mutagenesis* 2004;**557**:7–17. - Hansen ÅM, Raaschou-Nielsen O, Knudsen LE. Urinary 1-hydroxypyrene in children living in city and rural residences in Denmark. *SciTotal Environ* 2005;347:98–105. - Harri M, Svoboda P, Mori T, et al. Analysis of 8-hydroxydeoxyguanosine among workers exposed to diesel particulate exhaust: comparison with urinary metabolites and PAH air monitoring. Free Radic Res 2005;39:963–72. - Hemminki K, Zhang LF, Krüger J, et al. Exposure of bus and taxi drivers to urban air pollutants as measured by DNA and protein adducts. Toxicol Lett 1994;72:171-4. - Herbstman JB, Tang D, Zhu D, et al. Prenatal Exposure to Polycyclic Aromatic Hydrocarbons, Benzo[a]Pyrene-DNA Adducts and Genomic DNA Methylation in Cord Blood. Environmental Health Perspectives Published Online First: 17 January 2012. doi:10.1289/ehp.1104056 - Hu S-W, Chan Y-J, Hsu H-T, et al. Urinary levels of 1-hydroxypyrene in children residing near a coal-fired power plant. Environ Res 2011;111:1185–91. - Ishikawa H, Tian Y, Piao F, et al. Genotoxic damage in female residents exposed to environmental air pollution in Shenyang city, China. Cancer Lett 2006;240:29–35. - Jerrett M, Burnett RT, Ma R, et al. Spatial analysis of air pollution and mortality in Los Angeles. Epidemiology 2005;16:727–36. - Katanoda K, Sobue T, Satoh H, *et al.* An Association Between Long-Term Exposure to Ambient Air Pollution and Mortality From Lung Cancer and Respiratory Diseases in Japan. *Journal of Epidemiology* 2011;**21**:132–43. - Kim JY, Prouty LA, Fang SC, et al. Association between fine particulate matter and oxidative DNA damage may be modified in individuals with hypertension. J Occup Environ Med 2009:51:1158–66. - Knudsen LE, Norppa H, Gamborg MO, et al. Chromosomal Aberrations in Humans Induced by Urban Air Pollution: Influence of DNA Repair and Polymorphisms of GlutathioneS-Transferase M1 and N-Acetyltransferase 2. Cancer Epidemiology Biomarkers & Prevention 1999;8:303–10. - Krewski D, Burnett RT, Goldberg M, et al. Reanalysis of the Harvard Six Cities Study, Part I: Validation and Replication. InhalToxicol 2005;17:335–42. - Kyrtopoulos SA, Georgiadis P, Autrup H, *et al.* Biomarkers of genotoxicity of urban air pollution: Overview and descriptive data from a molecular epidemiology study on populations exposed to moderate-to-low levels of polycyclic aromatic hydrocarbons: the AULIS project. *Mutation Research/Genetic Toxicology and Environmental Mutagenesis* 2001;**496**:207–28. - Laden F, Schwartz J, Speizer FE, et al. Reduction in Fine Particulate Air Pollution and Mortality: Extended Follow-up of the Harvard Six Cities Study. AmJRespirCritCare Med 2006;173:667–72. - Lagorio S, Tagesson C, Forastiere F, et al. Exposure to benzene and urinary concentrations of 8-hydroxydeoxyguanosine, a biological marker of oxidative damage to DNA. Occup Environ Med 1994;51:739–43. - Lai C, Liou S, Lin H, et al. Exposure to traffic exhausts and oxidative DNA damage. Occup Environ Med 2005;62:216–22. - Lee M-W, Chen M-L, Lung S-CC, et al. Exposure assessment of PM2.5 and urinary
8-OHdG for diesel exhaust emission inspector. Sci Total Environ 2010;408:505–10. - Loft S, Poulsen HE, Vistisen K, et al. Increased urinary excretion of 8-oxo-2'-deoxyguanosine, a biomarker of oxidative DNA damage, in urban bus drivers. Mutat Res 1999;441:11–9. - Madrigano J, Baccarelli A, Mittleman MA, *et al.* Prolonged exposure to particulate pollution, genes associated with glutathione pathways, and DNA methylation in a cohort of older men. *Environ Health Perspect* 2011;**119**:977–82. - Marczynski B, Preuss R, Mensing T, *et al.* Genotoxic risk assessment in white blood cells of occupationally exposed workers before and after alteration of the polycyclic aromatic hydrocarbon (PAH) profile in the production material: comparison with PAH air and urinary metabolite levels. *Int Arch Occup Environ Health* 2005;**78**:97–108. - Martínez-Salinas RI, Elena Leal M, Batres-Esquivel LE, et al. Exposure of children to polycyclic aromatic hydrocarbons in Mexico: assessment of multiple sources. Int Arch Occup Environ Health 2010;83:617–23. - McDonnell WF, Nishino-Ishikawa N, Petersen FF, *et al.* Relationships of mortality with the fine and coarse fractions of long-term ambient PM10 concentrations in nonsmokers. *JExpoAnalEnvironEpidemiol* 2000;**10**:427–36. - Merlo F, Andreassen A, Weston A, et al. Urinary excretion of 1-hydroxypyrene as a marker for exposure to urban air levels of polycyclic aromatic hydrocarbons. Cancer Epidemiology Biomarkers & Prevention 1998;7:147–55. - Mills PK, Abbey D, Beeson WL, et al. Ambient air pollution and cancer in California Seventh-day Adventists. ArchEnvironHealth 1991;46:271–80. - Møller P, Loft S. Oxidative Damage to DNA and Lipids as Biomarkers of Exposure to Air Pollution. *Environ Health Perspect* 2010;118:1126–36. - Mori T, Yoshinaga J, Suzuki K, *et al.* Exposure to polycyclic aromatic hydrocarbons, arsenic and environmental tobacco smoke, nutrient intake, and oxidative stress in Japanese preschool children. *Sci Total Environ* 2011;**409**:2881–7. - Nafstad P, Haheim LL, Oftedal B, et al. Lung cancer and air pollution: a 27 year follow up of 16 209 Norwegian men. Thorax 2003;58:1071–6. - Neri M, Ugolini D, Bonassi S, *et al.* Children's exposure to environmental pollutants and biomarkers of genetic damage. II. Results of a comprehensive literature search and meta-analysis. *MutatRes* 2006;**612**:14–39. - Nielsen PS, Okkels H, Sigsgaard T, et al. Exposure to urban and rural air pollution: DNA and protein adducts and effect of glutathione-S-transferase genotype on adduct levels. IntArchOccupEnvironHealth 1996;68:170–6. - Nielsen PS, de Pater N, Okkels H, *et al.* Environmental air pollution and DNA adducts in Copenhagen bus drivers--Effect of GSTM1 and NAT2 genotypes on adduct levels. *Carcinogenesis* 1996;**17**:1021–7. - Novotna B, Topinka J, Solansky I, et al. Impact of air pollution and genotype variability on DNA damage in Prague policemen. Toxicol Lett 2007;172:37–47. - Palli D, Saieva C, Munnia A, et al. DNA adducts and PM10 exposure in traffic-exposed workers and urban residents from the EPIC-Florence City study. SciTotal Environ 2008;403:105–12. - Palli D, Sera F, Giovannelli L, et al. Environmental ozone exposure and oxidative DNA damage in adult residents of Florence, Italy. Environ Pollut 2009;157:1521–5. - Pavanello S, Bollati V, Pesatori AC, *et al.* Global and gene-specific promoter methylation changes are related to anti-B[a]PDE-DNA adduct levels and influence micronuclei levels in polycyclic aromatic hydrocarbon-exposed individuals. *IntJCancer* 2009;**125**:1692–7. - Pavanello S, Pulliero A, Saia BO, et al. Determinants of anti-benzo[a]pyrene diol epoxide—DNA adduct formation in lymphomonocytes of the general population. *Mutation Research/Genetic Toxicology and Environmental Mutagenesis* 2006;**611**:54–63. - Pedersen M, Wichmann J, Autrup H, et al. Increased micronuclei and bulky DNA adducts in cord blood after maternal exposures to traffic-related air pollution. EnvironRes 2009;109:1012–20. - Peluso M, Munnia A, Palli D, et al. Bulky DNA adducts and lung cancer risk: a prospective study in EPIC investigation. AACR Meeting Abstracts 2005;2005:512-a. - Peluso M, Srivatanakul P, Munnia A, et al. DNA adduct formation among workers in a Thai industrial estate and nearby residents. SciTotal Environ 2008;389:283–8. - Perera F, Brenner D, Jeffrey A, et al. DNA adducts and Related Biomarkers in Populations Exposed to Environmental Carcinogens. 1991. - Pope C, Thun M, Namboodiri M, et al. Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. AmJRespirCritCare Med 1995;151:669–74. - Pope III CA, Burnett RT, Thun MJ, et al. Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution. JAMA 2002;287:1132–41. - Pope CA, Burnett RT, Turner MC, *et al.* Lung Cancer and Cardiovascular Disease Mortality Associated with Ambient Air Pollution and Cigarette Smoke: Shape of the Exposure–Response Relationships. *Environmental Health Perspectives* 2011;**119**:1616–21. - Raaschou-Nielsen O, Bak H, Sørensen M, et al. Air Pollution from Traffic and Risk for Lung Cancer in Three Danish Cohorts. Cancer Epidemiology Biomarkers & Prevention 2010;19:1284–91. - Raaschou-Nielsen O, Andersen ZJ, Hvidberg M, et al. Lung Cancer Incidence and Long-Term Exposure to Air Pollution from Traffic. Environmental Health Perspectives 2011;119:860–5. - Ren C, Fang S, Wright RO, et al. Urinary 8-hydroxy-2'-deoxyguanosine as a biomarker of oxidative DNA damage induced by ambient pollution in the Normative Aging Study. Occup Environ Med 2011;68:562–9. - Rossner Jr. P, Uhlirova K, Beskid O, *et al.* Expression of XRCC5 in peripheral blood lymphocytes is upregulated in subjects from a heavily polluted region in the Czech Republic. *Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis* 2011;**713**:76–82. - Rossner P Jr, Svecova V, Milcova A, et al. Oxidative and nitrosative stress markers in bus drivers. Mutat Res 2007;617:23–32. - Rossner P Jr, Rossnerova A, Sram RJ. Oxidative stress and chromosomal aberrations in an environmentally exposed population. *Mutat Res* 2011;707:34–41. - Rossnerova A, Spatova M, Pastorkova A, et al. Micronuclei levels in mothers and their newborns from regions with different types of air pollution. Mutat Res 2011;715:72–8. - Ruchirawa M, Mahidol C, Tangjarukij C, *et al.* Exposure to genotoxins present in ambient air in Bangkok, Thailand--particle associated polycyclic aromatic hydrocarbons and biomarkers. *SciTotal Environ* 2002;**287**:121–32. - Singh R, Kaur B, Kalina I, et al. Effects of environmental air pollution on endogenous oxidative DNA damage in humans. Mutat Res 2007;620:71–82. - Sørensen M, Autrup H, Hertel O, et al. Personal exposure to PM2.5 and biomarkers of DNA damage. Cancer Epidemiol Biomarkers Prev 2003;12:191-6. - Sørensen M, Skov H, Autrup H, *et al.* Urban benzene exposure and oxidative DNA damage: influence of genetic polymorphisms in metabolism genes. *The Science of The Total Environment* 2003;**309**:69–80. - Sram RJ., Beskid O, Rössnerova A, *et al.* Environmental exposure to carcinogenic polycyclic aromatic hydrocarbons: The interpretation of cytogenetic analysis by FISH. *Toxicology letters* 2007;**172**:12–20. - Srám RJ, Binková B, Rössner P, et al. Adverse reproductive outcomes from exposure to environmental mutagens. Mutat Res 1999;428:203–15. - Staessen JA, Nawrot T, Hond ED, *et al.* Renal function, cytogenetic measurements, and sexual development in adolescents in relation to environmental pollutants: a feasibility study of biomarkers. *The Lancet* 2001;**357**:1660–9. - Suzuki J, Inoue Y, Suzuki S. Changes in the urinary excretion level of 8-hydroxyguanine by exposure to reactive oxygen-generating substances. Free Radic Biol Med 1995;18:431-6. - Svecova V, Rossner Jr. P, Dostal M, et al. Urinary 8-oxodeoxyguanosine levels in children exposed to air pollutants. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2009;662:37–43. - Svecova V, Milcova A, Lnenickova Z, et al. Seasonal variability of oxidative stress markers in city bus drivers. Part I. Oxidative damage to DNA. Mutation Research 2008;642:14–20. - Tarantini L, Bonzini M, Apostoli P, et al. Effects of particulate matter on genomic DNA methylation content and iNOS promoter methylation. EnvironHealth Perspect 2009;117:217–22. - Topinka J, Sevastyanova O, Binkova B, et al. Biomarkers of air pollution exposure—A study of policemen in Prague. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2007:624:9–17. - Topinka J., Binkova B., Mrackova G., et al. DNA adducts in human placenta as related to air pollution and to GSTM1 genotype. Mutation research Genetic toxicology and environmental mutagenesis 1997;390:59–68. - Tuntawiroon J, Mahidol C, Navasumrit P, et al. Increased health risk in Bangkok children exposed to polycyclic aromatic hydrocarbons from traffic-related sources. Carcinogenesis 2007;28:816–22. - Turner MC, Krewski D, Pope CA, et al. Long-term Ambient Fine Particulate Matter Air Pollution and Lung Cancer in a Large Cohort of Never-Smokers. American Journal of Respiratory and Critical Care Medicine 2011;184:1374 –1381. - Vineis P, Hoek G, Krzyzanowski M, et al. Air pollution and risk of lung cancer in a prospective study in Europe. IntJCancer 2006;119:169–74. - Vinzents PS, Møller P, Sørensen M, et al. Personal exposure to ultrafine particles and oxidative DNA damage. Environ Health Perspect 2005;113:1485–90. - Whyatt RM, Santella RM, Jedrychowski W, et al. Relationship between ambient air pollution and DNA damage in Polish mothers and newborns. EnvironHealth Perspect 1998;106 Suppl 3:821–6. - Yang K, Airoldi L, Pastorelli R, et al. Aromatic DNA adducts in lymphocytes of humans working at high and low traffic density areas. Chemico-Biological Interactions 1996;101:127–36. - Yorifuji T, Kashima S, Tsuda T, et al. Long-term exposure to
traffic-related air pollution and mortality in Shizuoka, Japan. OccupEnvironMed 2010;67:111–7. - Zidzik J, Kalina I, Salagovic J, et al. Influence of PAHs in ambient air on chromosomal aberrations in exposed subjects: International study EXPAH. Mutation Research 2007;620:41-8.