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ABSTRACT
Objectives There is great interest in evaluating
geneeenvironment interactions with chemical
exposures, but exposure assessment poses a unique
challenge in caseecontrol studies. Expert assessment of
detailed work history data is usually considered the best
approach, but it is a laborious and time-consuming
process. We set out to determine if a less intensive
method of exposure assessment (a job exposure matrix
(JEM)) would produce similar results to a previous
analysis that found evidence of effect modification of the
association between expert-assessed lead exposure and
risk of brain tumours by a single nucleotide
polymorphism in the ALAD gene (rs1800435).
Methods We used data from a study of 355 patients
with glioma, 151 patients with meningioma and 505
controls. Logistic regression models were used to
examine associations between brain tumour risk and
lead exposure and effect modification by genotype. We
evaluated Cohen’s k, sensitivity and specificity for the
JEM compared to the expert-assessed exposure
metrics.
Results Although effect estimates were imprecise and
driven by a small number of cases, we found evidence of
effect modification between lead exposure and ALAD
genotype when using expert- but not JEM-derived lead
exposure estimates. k Values indicated only modest
agreement (<0.5) for the exposure metrics, with the
JEM indicating high specificity (w0.9) but poor
sensitivity (w0.5). Disagreement between the two
methods was generally due to having additional
information in the detailed work history.
Conclusion These results provide preliminary evidence
suggesting that high quality exposure data are likely to
improve the ability to detect genetic effect modification.

INTRODUCTION
Caseecontrol studies are often the most feasible
study design for the investigation of occupational
exposures and rare diseases. However, occupational
exposure assessment can be quite challenging in
this setting, given the low prevalence of exposure
to many specific agents in the study population and
the inability to obtain workplace records to recon-
struct exposures accurately.
Job exposure matrices (JEM) and expert assess-

ment of self-reported job histories are two occu-
pational exposure assessment methods that have
been commonly utilised in caseecontrol studies.1

There is some overlap between these procedures

since both are typically developed by industrial
hygienists who base their decisions on literature
reviews and/or knowledge of industrial processes
and occupational tasks. A JEM is a database that
uses coded job and industry titles to assign expo-
sures to a specific agent,1 2 while expert assessment
involves the evaluation of detailed self-reported
work history information from structured ques-
tionnaires by industrial hygienists to assign expo-
sures.1 3 4 Thus, there may be a gain in accuracy
over a JEM because experts can account for within-
job variability of exposures. Expert assessment of
self-reported job histories has some limitations,
including its dependence on subject recall of
detailed work information and the experience and
subjectivity of the expert. Nonetheless, expert
assessment of subject specific job history informa-
tion currently is considered by many to be the best
exposure assessment method for caseecontrol
studies.5 However, expert assessment is also
a costly and time-consuming process1; as such,
there is great interest in determining if less labour-
intensive methods can produce similar results.
The issue of accurate exposure assessment in

caseecontrol studies is assuming even greater
attention than in the past with the growing
interest in studies of geneeenvironment interac-
tions. It has been shown that even small errors in
the assessment of environmental factors can result
in biased estimates of interaction parameters and
substantial decreases in study power.6 7 Also, unless
we use the most accurate exposure assessment
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methods in studies evaluating genotypes and environmental
exposures, there is a greater probability of detecting associations
with genotypes rather than environmental exposures, since
genotyping typically has a lower degree of classification error.8

While there have been comparisons of occupational exposure
assessment methods in previous caseecontrol studies,9e15 none,
to our knowledge, have compared exposure assessment methods
in the context of geneeenvironment interactions. We evaluated
occupational exposure assessment for lead by a JEM in a casee
control study of adult brain tumours that previously reported
evidence of effect modification of expert-assessed lead exposure
by the G177C polymorphism (rs1800435) of the d-amino-
levulinic acid dehydratase (ALAD) gene (G¼ALAD1 and
C¼ALAD2).16 We determined whether risk estimates produced
by the JEM-based exposure assessment were similar to those
produced by the expert assessment. We also present the agree-
ment, sensitivity and specificity of the JEM exposure estimates
in comparison to the expert estimates.

MATERIALS AND METHODS
Study population
The study population has been described in detail previously.16 17

Adult patients diagnosed with a primary glioma (489), menin-
gioma (197) or acoustic neuroma (96) during 1994e1998 at one of
three hospitals were enrolled into the study (92% participation).
Controls were 799 patients admitted to the same hospitals for
various non-neoplastic conditions that were frequency matched
(1:1 ratio) to cases based on categories of sex, age, race, hospital
and residential proximity to the hospital (86%).

Blood samples were obtained from 382 patients with glioma
(78%), 158 patients with meningioma (68%) and 540 controls
(62%). Given the small number of patients with acoustic
neuroma, they were excluded from this analysis. The study
protocol was approved by the institutional review board of each
participating institution, and written informed consent was
obtained from each patient or proxy.

Genotyping
Genotyping of the rs1800435 polymorphismwas conducted by the
Core Genotyping Facility of the National Cancer Institute using
a medium-throughput Taqman assay.18 There was a 90% concor-
dance rate for quality control duplicate samples, and94%of samples
were successfully genotyped (355 glioma cases, 151 meningioma
cases, 505 controls). Therewas no statistically significant departure
from HardyeWeinberg equilibrium among controls.

Data collection
A trained research nurse administered an in-person interview to
each patient or proxy (8%).16 For all patients, a life-time occu-
pational history (job title, type of industry, dates, activities, and
materials and chemicals used) was obtained along with infor-
mation on other potential risk factors for brain tumours. In
addition to providing a standard work history, participants
answered one of 63 questionnaires on specific jobs with detailed
questions developed by an industrial hygienist regarding specific
tasks and workplace conditions within each job.19

Lead exposure assessment
A single expert, blinded to the case/control status of the partici-
pants, carried out the assessment over an 18-month period. For the
expert assessment, exposure guidelineswere constructed based on
a comprehensive literature review of peer-reviewed articles and
technical reports linking job titles and industries with air level
and/or blood level measurements of lead by decade.16 These

guidelines were used in conjunction with detailed questions on
tasks (welding, soldering, painting, sanding, etc) and workplace
conditions (ventilation, use of personal protective equipment, etc)
provided by the subject to assign an intensity (estimated airborne
concentration (0, 5e9, 10e29, 30e49, 50e249 or $250 mg/m3)),
a frequency (time exposed to lead (<1, 1e9, 10e29 or 30e40 h/
week)) and a probability (likelihood of lead exposure actually
occurring (0, 1e9, 10e49, 50e89 or$90%)) for each job reported
by a study participant.
The JEM, which had been developed by different investigators

for a different study of brain tumours, assigned intensity and
probability of lead exposure (none¼0, low¼1, medium¼2,
high¼3) independently for each three-digit occupation and
industry code from the 1980 Census list of occupations and
industries.20 A separate metric for frequency of lead exposure
was not developed but was incorporated into the metric for
intensity. The intensities and probabilities were based on
published literature, computerised exposure databases, technical
reports and expert experience. Each final intensity and each final
probability score was obtained by multiplying the occupation
and industry scores for each job to create a 7-point scale (0, 1, 2,
3, 4, 6, 9). If either the occupation or industry code was missing,
the final intensity and probability score was obtained by
squaring the individual occupation or industry score. For
example, if the industry intensity score was missing, but the
occupational intensity score was 2, the occupational score would
be squared to give a final intensity score of 4.
Participants were considered ‘ever exposed’ if they had at least

one lead-exposed job at any exposure intensity but probability of
$10% ($2 for the JEM). These probability levels were chosen to
provide reasonable sensitivity and high specificity of the expo-
sure assessment methods, minimising the attenuation of effect
estimates by exposure misclassification in population-based
caseecontrol studies.21 Ever exposure was set to missing for
individuals with incomplete data for any job in their work
history, unless exposure to lead was indicated for at least one job
with complete data.
For the expert assessment method, lifetime cumulative lead

exposure was calculated by multiplying the number of years in
each lead-exposed job by the midpoint of the estimated airborne
concentration range and the estimated frequency of exposure
and then summing the cumulative exposures across jobs. For the
JEM, the product of the number of years in each job and the
estimated intensity score for each job was summed across jobs
to derive a cumulative exposure metric. Cumulative lead expo-
sure was set to missing for individuals with incomplete infor-
mation for any job in their lifetime job history. In order to
facilitate comparison between the two methods, the cumulative
expert and JEM exposure metrics were categorised into four
groups based on percentile distributions among the controls
(unexposed, #80th percentile, >80the95th percentile, >95th
percentile, unknown). Unexposed individuals comprised 60%
and 70% of the distribution of controls for the cumulative expert
and JEM exposure metrics, respectively.
For a subset of subjects whose characterisation as ever versus

never exposed differed according to the exposure assessment
method, an industrial hygienist (PAS), who supervised the
expert assessment in the original study, reviewed the subjects’
work history information and JEM assessment to identify
reasons contributing to the differences.

Statistical analyses
Unconditional logistic regression was used to evaluate the
associations of glioma and meningioma with exposure to lead
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(ever exposure and categories of cumulative lead exposure).
Effect modification was evaluated with likelihood ratio tests
comparing nested unconditional logistic regression models that
did and did not include cross-products terms for lead exposure
and ALAD genotype. ORs and 95% CIs for the association
between lead exposure and glioma and meningioma were
calculated for ALAD1 homozygotes and ALAD2 carriers; given
the small number of ALAD2 homozygotes (n¼1 glioma case;
n¼3 meningioma cases; n¼6 controls) they were combined with
the heterozygous participants in the analyses. The matching
variables age, sex, race, hospital and residential proximity to the
hospital were included in all analyses.

Akaike’s information criterion22 (AIC) and Bayesian infor-
mation criterion23 (BIC) were calculated to compare the good-
ness of fit between models using the expert-based exposure data
to models using the JEM-based exposure data. Smaller values of
these statistics indicate models that better fit the data.

Compared to the expert exposure assessment metrics, sensi-
tivity, specificity per cent agreement and Cohen’s k statistic
(which assesses agreement beyond chance) were calculated for
the similarly derived JEM estimates for meningioma cases and
controls. For cumulative lead exposure, JEM sensitivity and
specificity were assessed for successful classification of subjects
as ‘highly ’ exposed (ie, in either of the two highest categories of
exposure). Weighted Cohen’s k statistics were also calculated for
cumulative exposure where a single category difference in
agreement was given a weight of 0.66 and a two category
difference in agreement was given a weight of 0.33. All statistical
analyses were completed in STATA (Version 10, College Station,
Texas, USA).

RESULTS
The distribution of matching factors among cases and controls
has been previously reported16 and is not discussed here. As seen
in table 1, the JEM, for both the ever and cumulative exposure
metrics, classified a greater proportion of participants as unex-
posed compared to the expert-derived estimates. For both
metrics, the JEM and expert assessments classified different
numbers of individuals as ‘unknown’. In some instances, expo-
sure values could not be assigned based on the JEM because of
missing occupation and industry codes, but the expert was able
to assign exposure values using the detailed work history
information. In other instances, where the JEM assigned expo-
sure values if one of the two codes (occupation or industry) was
missing, the expert determined that exposure could not be
assigned based on the occupation or industry title alone, and in
the absence of detailed work history information, set the
exposure values to missing.

There was no evidence of an overall association between lead
exposure and glioma or of effect modification of the relationship
between lead and glioma by ALAD genotype using either
method of exposure assessment (table 1). There was evidence of
an association between lead exposure and meningioma among
individuals with the highest category of expert-assessed cumu-
lative lead exposure (OR 2.7 (95% CI 1.0 to 7.8)), but no similar
evidence was found when examining the JEM cumulative
exposure metric (OR 0.9 (95% CI 0.3 to 2.8)). Also for menin-
gioma, the metric based on expert assessment indicated
borderline evidence of effect modification by ALAD genotype
with ever exposure to occupational lead (p¼0.09) and statisti-
cally significant evidence of effect modification with cumulative
lead exposure (p¼0.04). Neither metric derived from the JEM
showed any evidence of effect modification of meningioma risk
with ALAD genotype.

For glioma, model fit statistics were very similar when
comparing logistic regression models using the expert-assessed
exposure data to models using the JEM-assessed exposure data
(results not shown). While for meningioma, fit was similar for
the overall expert and JEM models (results not shown), AIC and
BIC were lower for the expert models that included genotype
effect modification terms compared to the JEM models with
these terms (expert ever exposure: AIC¼654, BIC¼743; JEM
ever exposure: AIC¼670, BIC¼769; expert cumulative exposure:
AIC¼640, BIC¼747; JEM cumulative exposure: AIC¼650,
BIC¼757), indicating a better fit of the models to the expert-
assessed exposure data than to the JEM-assessed exposure data.
Tables 2 and 3 show the cross-classifications of meningioma

cases and controls with respect to the expert- and JEM-derived
ever versus never and cumulative exposure metrics, respectively.
In general, the expert assessment tended to classify more
subjects as exposed or into higher categories of exposure when
compared to the JEM. For example, among all meningioma cases
and controls, the expert assessment classified 40% of subjects as
ever-exposed, while the JEM classified 25% as ever-exposed.
When examining all subjects, ALAD1 homozygotes and

ALAD2 carriers, the sensitivity and specificity for the JEM ever/
never exposure metric was approximately 0.5 and 0.9, respec-
tively, for each of the three groups. The percentage of subjects
showing exact agreement of exposure classification among these
groups was approximately 75% and the corresponding k value
was approximately 0.4 for all three groups.
When considering cumulative exposure, the sensitivity

(specificity) of the JEM for successful classification of ‘high’
exposure (>80th percentile, ie, categories 2 and 3) was approx-
imately 0.5 (0.9) among the three groups (all subjects, ALAD1
homozygotes and ALAD2 carriers). The percentage of subjects
showing exact agreement of exposure classification among these
groups was approximately 60%. k (weighted-k) Values for these
three groups were approximately 0.3 (0.4).
An expert industrial hygienist (PAS) examined the JEM and

work history information for the 31 ALAD2 carriers in table 2 for
which the JEM and expert exposure assessments did not agree
with respect to having ever been exposed to lead. For these 31
individuals, the JEM and expert-assessed exposures differed for
43 of the 169 (25%) reported jobs because of differences in the
assignment of probability or intensity of exposure between the
two exposure assessment methods. For 37 of these 43 jobs,
which varied widely with respect to occupation and industry
titles, the expert assessment indicated exposure where the JEM
did not. For most of these jobs (27), this was because work
history data used in the expert assessment indicated the
occurrence of lead exposure that would not be expected based
on examining occupation and industry titles alone. For example,
the JEM indicated zero exposure to lead for a job as an editor
in the newspaper industry. However, the job history indicated
that the individual spent part of his time in the production area
during a time period when molten lead was still being used for
typesetting. In only one instance did the work history data
indicate a lack of lead exposure for a job which otherwise would
have been expected based on the occupation and industry titles
alone. For nine jobs, differences were attributed to the expert’s
knowledge of technical details for those particular jobs, and for
six jobs the potential for lead exposure was uncertain and could
have been argued either way.
A similar examination of sources of discrepancies between the

cumulative exposure metrics was difficult given differences in
the intensity scales and incorporation of frequency of exposure
data between the two exposure assessment methods. However,
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Table 1 Risk of glioma and meningioma with exposure to lead determined by an expert and a job exposure matrix by ALAD G177C (rs1800435)
genotype in the NCI Brain Tumour Study

Overall ALAD1* ALAD2* Py
Cases (%) Controls (%) OR (95% CI) Cases (%) Controls (%) OR (95% CI) Cases (%) Controls (%) OR (95% CI)

Glioma

Ever exposed to lead (expert)

No 196 (55) 288 (57) 1.0 169 (56) 236 (56) 1.0 27 (50) 52 (62) 1.0 0.2

Yes 157 (44) 216 (43) 0.8 (0.5 to 1.1) 130 (43) 183 (44) 0.7 (0.5 to 1.0) 27 (50) 33 (39) 1.1 (0.5 to 2.3)

Unknown 2 (1) 1 (<1) e 2 (1) 1 (<1) e 0 (0) 0 (0) e

Ever exposed to lead (JEM)

No 253 (71) 365 (72) 1.0 214 (71) 305 (73) 1.0 39 (72) 60 (71) 1.0

Yes 94 (26) 136 (27) 0.8 (0.6 to 1.1) 80 (27) 113 (27) 0.9 (0.6 to 1.4) 14 (26) 23 (27) 0.7 (0.3 to 1.6) 0.8

Unknown 8 (2) 4 (1) e 7 (2) 2 (<1) e 1 (2) 2 (2) e

Cumulative lead exposure
(expert)

Unexposed 196 (55) 288 (57) 1.0 169 (56) 236 (56) 1.0 27 (50) 52 (61) 1.0 0.8

#80th percentile 77 (22) 110 (22) 0.8 (0.5 to 1.1) 64 (21) 93 (22) 0.7 (0.5 to 1.1) 13 (24) 17 (20) 1.1 (0.4 to 2.6)

>80th to 95th percentile 48 (14) 83 (16) 0.6 (0.4 to 0.9) 40 (13) 70 (17) 0.5 (0.3 to 0.9) 8 (15) 13 (15) 0.7 (0.3 to 2.1)

>95th percentile 21 (6) 21 (4) 1.0 (0.5 to 2.0) 17 (6) 18 (4) 0.9 (0.4 to 1.9) 4 (7) 3 (4) 1.8 (0.3 to 8.9)

Unknown 13 (4) 3 (1) e 11 (4) 3 (1) e 2 (4) 0 (0) e

p Trendz 0.1 0.09 0.9

Cumulative lead exposure
(JEM)

Unexposed 253 (71) 365 (72) 1.0 214 (71) 305 (73) 1.0 39 (72) 60 (71) 1.0 0.8

#80th percentile 15 (4) 31 (6) 0.6 (0.3 to 1.2) 14 (5) 28 (7) 0.6 (0.3 to 1.2) 1 (2) 3 (4) 0.4 (0.04 to 4.6)

>80th to 95th percentile 53 (15) 78 (15) 0.8 (0.5 to 1.2) 45 (15) 62 (15) 0.9 (0.5 to 1.4) 8 (15) 16 (19) 0.6 (0.2 to 1.7)

>95th percentile 22 (6) 26 (5) 0.9 (0.5 to 1.7) 18 (6) 22 (5) 0.9 (0.4 to 1.7) 4 (7) 4 (5) 1.1 (0.3 to 4.9)

Unknown 12 (3) 5 (1) e 10 (3) 3 (1) e 2 (4) 2 (2) e

p Trendz 0.4 0.4 0.6

Meningioma

Ever exposed to lead (expert)

No 108 (72) 288 (57) 1.0 86 (74) 236 (56) 1.0 22 (63) 52 (61) 1.0 0.09

Yes 42 (28) 216 (43) 0.9 (0.5 to 1.5) 29 (25) 183 (44) 0.8 (0.4 to 1.3) 13 (37) 33 (39) 1.8 (0.7 to 4.8)

Unknown 1 (<1) 1 (<1) e 1 (1) 1 (<1) e 0 (0) 0 (0) e

Ever exposed to lead (JEM)

No 123 (81) 365 (72) 1.0 95 (82) 305 (73) 1.0 28 (80) 60 (71) 1.0 0.9

Yes 26 (17) 136 (27) 0.9 (0.5 to 1.7) 20 (17) 113 (27) 0.9 (0.5 to 1.7) 6 (17) 23 (27) 1.0 (0.3 to 3.1)

Unknown 2 (1) 4 (1) e 1 (1) 2 (<1) e 1 (3) 2 (2) e

Cumulative lead exposure
(expert)

Unexposed 108 (72) 288 (57) 1.0 86 (74) 236 (56) 1.0 22 (63) 52 (62) 1.0 0.04

#80th percentile 17 (11) 110 (22) 0.7 (0.4 to 1.3) 15 (13) 93 (22) 0.7 (0.4 to 1.4) 2 (6) 17 (20) 0.5 (0.09 to 2.5)

>80th to 95th percentile 15 (10) 83 (16) 1.0 (0.5 to 2.1) 9 (8) 70 (17) 0.7 (0.3 to 1.8) 6 (17) 13 (15) 2.4 (0.7 to 8.8)

>95th percentile 8 (5) 21 (4) 2.7 (1.0 to 7.8) 3 (3) 18 (4) 1.2 (0.3 to 4.8) 5 (14) 3 (4) 13.2 (2.4 to 72.9)

Unknown 3 (2) 3 (<1) e 3 (3) 3 (1) e 0 (0) 0 (0) e

p Trendz 0.4 0.6 0.007

Cumulative lead exposure
(JEM)

Unexposed 123 (81) 365 (72) 1.0 95 (82) 305 (73) 1.0 28 (80) 60 (71) 1.0 0.9

#80th percentile 5 (3) 31 (6) 0.6 (0.2 to 1.8) 4 (3) 28 (7) 0.6 (0.2 to 2.0) 1 (3) 3 (4) 1.1 (0.09 to 12.5)

>80th to 95th percentile 16 (11) 78 (15) 1.1 (0.5 to 2.1) 13 (11) 62 (15) 1.2 (0.6 to 2.5) 3 (9) 16 (19) 0.7 (0.2 to 3.0)

>95th percentile 4 (3) 26 (5) 0.9 (0.3 to 2.8) 3 (3) 22 (5) 0.8 (0.2 to 3.1) 1 (3) 4 (5) 1.1 (0.1 to 12.0)

Unknown 3 (2) 5 (1) e 1 (1) 3 (1) e 2 (6) 2 (2) e

p Trendz 0.9 0.9 0.8

*ALAD1 homozygotes: n (%) controls¼420 (83), n (%) glioma cases¼301 (85), n (%) meningioma cases¼116 (77); ALAD2 carriers: n (%) controls¼85 (17), n (%) glioma cases¼54 (15), n (%)
meningioma cases¼35 (23).
yp Value for effect modification of lead exposure by ALAD genotype.
zTest for trend excluded Unknown category.
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patterns were similar to those observed for the ever versus never
exposure analysis.

DISCUSSION
An association between lead and meningioma and its modifica-
tion by the ALAD rs1800435 polymorphism was observed based
on expert assessment of exposure but not when using a JEM.
Based on k statistics, there was fair to moderate agreement
between the exposure metrics derived from the JEM and expert
exposure assessment methods.24 While the JEM displayed
reasonable specificity compared to the expert assessment, its
sensitivity was only modest. As expected, the k statistics,
sensitivity and specificity values did not vary appreciably when
subjects were stratified by genotype. Although neither the
expert nor the JEM approach is perfect, we believe that in this
case, the expert approach is likely to be more accurate because,
unlike the JEM, expert assessment has the ability to account for
within-job variability by using detailed questionnaire-based
work history information (eg, specific tasks, control measures,
etc) specific to the study at hand.

The exposure prevalence for lead, based on expert assessment,
was approximately 40% among controls (table 1) which may
seem high. We believe the prevalence is realistic because of the
calendar time of the study, and because we considered all
exposures (including low exposures). The mean blood lead level
in the US population circa 1970 was 12.8 mg/dl.25 Although we
estimated occupational exposure prevalence in our study, this
figure does indicate fairly ubiquitous exposure to lead.

The risk estimates and corresponding 95% CI and p values
observed for the expert-assessed lead data differ slightly from
those previously reported.16 This is because the previous analyses
considered only those jobs with an exposure intensity of greater
than or equal to 10 mg/m3 to be exposed to lead. To facilitate
comparison between the expert and JEMassessmentmethods,we
did not impose this restriction in the current analysis.
Expert- and JEM-based exposure assessments have been

compared in previous caseecontrol studies.9e14 In our study, we
observed slightly higher levels of agreement between expert- and
JEM-based exposure assessments than observed in other studies
examining various exposures.9e11 For example, in a caseecontrol
study of glioma, Benke et al calculated a k of 0.33 for ever
exposure to lead,9 while we calculated a k of 0.5 for ever expo-
sure to lead among meningioma cases and controls. Even though
we observed a higher k value, 0.5 only represents a moderate
level of agreement.24 As with our study, previous evaluations of
various exposures in caseecontrol studies observed poor sensi-
tivity, yet high specificity, for JEMs compared to expert asses-
sments.12e14 Rybicki et al, for example, observed a sensitivity of
0 and a specificity of 0.93 when comparing lead exposure esti-
mates derived from a JEM versus expert assessment.12

Although in this paper we consider expert assessment as the
more accurate method, it is also imperfect. The quality of the
assessment depends on the experience of the expert,5 and there
may be differences in exposure assignment as the study prog-
resses, although the latter issue can be somewhat mitigated with
detailed and standardised rules.1 26 While the ability to account
for within-job variability is a strength of expert assessment
because of the potential gain in accuracy, this gain may be offset
by limitations in the ability of participants to recall detailed
work information. The use of self-reported job histories also
raises issues of response bias (ie, cases indicate greater exposures
to lead because of their disease status), but this is not likely to be
a problem in our study given that our questionnaire was
designed and administered in such a way as to assess the
potential for exposure to a wide variety of agents without prior
knowledge of what exposures would be of most interest. Thus,
any resulting misclassification of exposure would likely be non-
differential, and the risk estimates would most typically be
biased towards the null.
Use of a biomarker for cumulative lead exposure such as bone

lead measurements rather than questionnaires would have been
ideal. However, evaluation of the association between lead
exposure and brain tumours was not the primary objective of

Table 2 Comparison of ever lead exposure determined by expert
assessment with exposure determined by a job exposure matrix for
meningioma cases and controls in the NCI Brain Tumour Study

Overall ALAD1 ALAD2

Expert Expert Expert

JEM 0 1 U JEM 0 1 U JEM 0 1 U

0* 364 122 2 0 298 100 2 0 66 22 0

1* 28 134 0 1 22 111 0 1 6 23 0

U* 4 2 0 U 2 1 0 U 2 1 0

Sensitivityy 0.52 0.53 0.51

Specificityy 0.93 0.93 0.92

% Agreement 76 76 74

k 0.47 0.48 0.43

*0¼never, 1¼ever, U¼unknown.
yRestricted to non-missing data.

Table 3 Comparison of cumulative lead exposure determined by expert assessment with exposure determined by a job exposure matrix for
meningioma cases and controls in the NCI Brain Tumour Study

Overall ALAD1 ALAD2

Expert Expert Expert

JEM 0 1 2 3 U JEM 0 1 2 3 U JEM 0 1 2 3 U

0* 364 70 42 8 4 0 298 58 34 6 4 0 66 12 8 2 0

1* 10 12 13 1 0 1 9 12 11 0 0 1 1 0 2 1 0

2* 18 37 29 9 1 2 13 32 23 6 1 2 5 5 6 3 0

3* 0 7 13 10 0 3 0 5 11 9 0 3 0 2 2 1 0

U* 4 1 1 1 1 U 2 1 0 0 1 U 2 0 1 1 0

Sensitivityy 0.49 0.49 0.48

Specificityy 0.88 0.88 0.87

% Agreement 63 64 61

k 0.29 0.30 0.24

w-kz 0.42 0.43 0.37

*0¼no exposure, 1¼#80th percentile, 2¼>80th to 95th percentile, 3¼>95th percentile, U¼unknown.
yClassified as 2 or 3; restricted to non-missing data.
zWeighted Cohen’s k (single category difference in agreement given a weight of 0.66 and two category difference in agreement given a weight of 0.33); restricted to non-missing data.
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this study when it was initiated, and, as such, biomarker data
for lead exposure were not collected. In a previous comparison of
exposure assessment methods including biomarker data, Tiele-
mans et al found that assessment of individuals as exposed
versus unexposed to chromium by job-specific questionnaires
compared better to urinary measurements than when using
a JEM to assess exposure.15 Although urinary chromium
concentrations were clearly increased in subjects classified as
exposed by the job-specific questionnaire, the exposed group
from the job-specific questionnaire was restricted to those
individuals that were determined to be highly exposed, and k
statistics indicated only poor to moderate agreement. While in
the absence of actual measurement data, expert assessment is
considered the best approach to date for assessing past exposures
in population-based caseecontrol studies,5 resources should be
directed towards developing better methods that address the
limitations of expert assessments.

Expert assessment has been reported to provide greater
statistical power than other methods (including JEM-based
exposure assessment) for detecting associations between expo-
sure and disease.27 In the analysis of geneeenvironment effect
modification, statistical power becomes an even greater issue as
studies typically require large sample sizes to detect effect
modification.28 It has been demonstrated that even small errors
in the assessment of environmental factors can result in biased
interaction parameters and substantially increased sample size
requirements for the detection of effect modification.6 7 In our
analyses, misclassification of exposure by the JEM as compared
to expert assessment resulted in smaller ORs and less likelihood
of detecting an effect. These results indicate that investigators
would benefit from using the most accurate method of exposure
assessment available, since the attenuating effects of exposure
misclassification would result in increased sample size require-
ments to detect effect modification29 that would offset any
savings from using a less costly method of exposure assessment.1

As genome-wide association studies identify genetic poly-
morphisms associated with disease, there is increasing interest
and need for evaluating interaction with environmental factors.
Although we recognise the need for replication of the effect
modification results given the small sample size of variant
carriers exposed to lead, preliminary findings suggest that high
quality exposure data are likely to improve the ability to detect
genetic effect modification.
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